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Chapter 1

The X(3872)

The understanding of matter is one of the most compelling topics in science. Because
of this, it has been studied through the ages. What is matter composed of? Can
one understand the behavior of things by identifying their building blocks?

After revolutionary discoveries in the last century, our current understanding of
matter is contained in the standard model of particle physics. It describes all the
building blocks of matter as we know them today. Theoretically there is a wide
range of possibilities to form combinations of these elementary building blocks. In
nature, however, only very basic combinations have been observed.

In 2003, a new particle was discovered with the name X(3872). Its observed prop-
erties are not in good agreement with the expectations for the ‘traditional’ forms of
matter. At the same time, the properties are partly in exceptional agreement with
exotic forms. Does the X(3872) proof the existence of a new form of matter? To
help answer this question this thesis will measure properties of the X(3872).

This introductory chapter presents a short history of our understanding of matter,
the discovery of the X(3872), and the reason why it is considered as a candidate
for exotic matter. Both the early experimental findings and the interpretations
developed to explain them are covered. Also discussed are further experimental
developments that started to constrain theoretical models.

1.1 History of the Understanding of Matter

The discussion of the fundamentals of matter can be dated back to the Greek philoso-
phers. Some, like Democritus, believed that matter was made up from solid basic
elements of different shape and size that could not be further divided (‘atomos’,
indestructible particle). These atoms could be arranged and combined differently in
empty space to form all sorts of known matter. This approach was however rejected
later by Aristotle. As a consequence, the more spiritual view of explaining all things
as a combination of air, earth, fire, and water prevailed. This view remained very
popular, lasting through the Middle Ages and the Renaissance till the 17th century.
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Only the advances in chemistry in the 17th century made apparent that there had
to be more than four elements. Next to the different chemical properties of these
elements it was observed that the ratio of elements involved in a chemical reaction
followed simple rules. This reintroduced the concept of atoms of different types
— elementary, not further divisible building blocks. More and more elements were
discovered which allowed to group them by their chemical properties — this was the
birth of the periodic table of elements.

At the threshold of the 19th century, radiation experiments lead to a major step
forward in the understanding of the atom. The discovery of the electron showed
that atoms were not the most basic building blocks of matter. Surprisingly it was
found that an atom is made up of a heavy, very tiny nucleus, surrounded by a
cloud of electrons. In 1932, the discovery of the neutron marked an important
intermediate point in our understanding of matter — matter as a combination of
different atoms, which in turn are made up of three basic constituents: electrons,
protons and neutrons.

Starting from the 1940s, unexpected observations of unknown particles in cosmic
rays pronounced the birth of particle physics. The muon and the pion could not
be explained as new elements, but proved to be completely new particles. These
discoveries were followed subsequently by the observation of a lot of new particles.
In order to explain these new states, the quark model was introduced in the 1960s.
This model proposed the existence of so-called quarks as constituents of the new
particles, where different quark combinations result in different particles.

The quark model was however not very popular, since quarks could not be ex-
perimentally observed. The wide acceptance of the quark model began with the
discovery of the J/ψ in 1974. While other theories could not accommodate this par-
ticle, it was easily explained within the quark model. Further experimental evidence
and progress in the theoretical understanding culminated in the development of the
standard model of particle physics.

The standard model contains our current understanding of the structure of matter.
In short it says that matter as we know it is composed out of two basic components:
quarks and leptons. The electron, one of the leptons, is still considered to be an
elementary particle. However, the proton and neutron proved to be composites out
of three quarks.

1.2 The Standard Model of Elementary Particle

Physics

The standard model of elementary particle physics (abbreviated as SM) is a theory
that describes all the constituents of observed matter as we know them today. Fur-
thermore it describes the fundamental forces that act between these constituents
of matter. This section concentrates on the aspect of matter within the standard
model and only briefly mentions the interactions between the matter particles.
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particle name symbol mediated force couples to

photon γ electromagnetic force electric charge
Z boson Z0 weak force weak charge

W bosons W± weak force weak charge
gluon g strong force color charge

Table 1.1: List of the gauge bosons, the particles responsible for the mediation of the
forces.

The particles in the standard model can be ordered into three different groups:
gauge bosons, leptons, and quarks. Gauge bosons are responsible for the mediation
of the forces. Table 1.1 lists the gauge bosons, the force they mediate and the
property they couple to. As the name already states, gauge bosons are bosons,
which means that they follow Bose statistics and have integer spin. The gauge
boson responsible for transmitting the electromagnetic force is the photon, which
couples to the electric charge. Because the photon is massless, the range of the
electromagnetic interaction is infinite. The weak interaction is transmitted by the
Z and W bosons. They are extremely massive, making the weak interaction a
short-range interaction. The high mass is also the reason for the fact that weak
interaction effects usually can be neglected in the presence of other interactions.
This effect becomes less pronounced with higher available energies. At energies of
the order of the W/Z boson masses the strength of the weak interaction becomes
comparable to that of the electromagnetic interaction. The last interaction is the
strong interaction. It is transmitted by massless gluons which couple very strongly
to the so-called color charge. This color charge is carried by quarks (see below)
and by the gluons themselves. This has the unique effect that gluons can couple
among themselves. Because of color confinement gluons cannot exist as independent
particles. As a consequence the strong interaction has a very short range. It should
be noted that gravity is not included in the standard model, so that there is also
no corresponding boson in the standard model which would be responsible for the
gravitational force.

The group of particles which only couples to the weak and the electromagnetic inter-
action and not to the strong interaction is called leptons. They are grouped in three
generations, listed in table 1.2. Leptons are fermions, obeying Fermi-Dirac statistics.
This is a crucial feature, since the Pauli exclusion principle forbids two fermions to
be in the same quantum state. This leads to countless effects in atomic and solid
state physics, which all have their origin in the fact that a system of electrons — the
only stable lepton — are not all allowed to occupy the state of lowest energy. Each
charged lepton has its corresponding neutral partner, the neutrinos. Although they
were postulated in the standard model with zero mass, the observation of neutrino-
oscillations — neutrinos changing their flavor over time and distance — has proven
this postulation wrong. Neutrinos can only interact weakly, possessing no electric
charge or color charge, which makes them extremely difficult to study.
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particle name symbol

first generation
electron e

electron neutrino νe

second generation
muon µ

muon neutrino νµ

third generation
tau τ

tau neutrino ντ

Table 1.2: List of the leptons within the standard model.

particle name symbol

first generation
up quark u

down quark d

second generation
charm quark c
strange quark s

third generation
top quark t

bottom quark b

Table 1.3: List of the quarks within the standard model.

The last group of elementary particles in the standard model are referred to as
‘quarks’. Quarks are the only particles which couple to all of the forces, since quarks
carry electric charge, weak charge and color charge. As is the case for leptons, they
can be arranged in three generations (see table 1.3). The properties of the strong
interaction are described by the theory of ‘Quantum Chromodynamics’ (QCD). One
of the most surprising properties of the theory is the fact, that the strength of the
interaction between two quarks increases with their distance. The reason is the
already mentioned fact, that the gluons as the carriers of the strong interaction
possess color charge themselves, which leads to self-coupling. As a result it is not
possible to observe free quarks. The energy required to separate quarks would result
in the creation of new quark pairs, always preventing the existence of separated
quarks. Quarks are only observable in composites, called ‘hadrons’, which are color-
neutral.

In addition, each fermionic particle, i.e. every quark and lepton, has its correspond-
ing anti-particle with identical mass and spin, but opposite charge. Antimatter
behaves completely symmetrical to matter, following the same physical rules.

The standard model proves to be a theory that is in exceptional agreement with
many experimental facts. However, it is not without limitations. Concentrating on
the subject of matter, we know from cosmology that there are unknown sources of
gravitational forces, ‘Dark Matter’ and ‘Dark Energy’, which cannot be explained
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by the matter that we know about.

There is a different aspect where the standard model does not give a definitive
answer. While the standard model contains all the elementary particles we know of,
it does at the moment not firmly predict how these particles can be combined. This
is not a theoretical but a practical issue, because current methods to calculate QCD
processes are not able to perform calculations with acceptable uncertainties at the
low energies of the particle masses.

From a purely phenomenological point of view it is however known that all observed
particles can either be interpreted as a lepton or, for the vast majority, as a so-
called ‘hadron’. Two types of hadrons are known: baryons and mesons. Whereas
baryons consist of a combination of three quarks, mesons are made up from a quark
and an anti-quark. Examples for baryons are the proton with quark combination
uud or the neutron with combination udd. Pions (e.g. π+ as ud̄) or kaons (e.g.
K+ as us̄) are examples for mesons. Baryons and mesons are the only hadronic
combinations known to be realized in nature. The quark model classifies baryons
and mesons according to their quark content. It is however known that the true
structure of a hadron is more complicated than a simple composition of two or three
quarks. Virtual quark pairs as well as virtual gluons that are constantly produced
and annihilated also add to the picture.

One can also imagine that other possibilities to form matter, other than mesons
and baryons, could exist. Combinations of four valence quarks, five valence quarks,
quarks and gluons, or only gluons have been hypothesized. All of them are possible
within QCD — however experiment did not yield convincing evidence for them yet.

1.3 The Discovery of the X(3872)

In 2003 the Belle collaboration announced the discovery of a new state [1] with a
measured mass of

m = 3872.0 ± 0.6 (stat) ± 0.5 (syst) MeV/c2.

Because the nature of the state was not clear, its mass was used to label the state
X(3872). It was reconstructed in the exclusive decay

B± → K±X(3872) → K±(J/ψπ+π−).

35.7±6.8 events were observed, with a statistical significance of 10.3σ (see figure 1.1).

The observation of the X(3872) was quickly confirmed by the CDF collaboration [2].
A significant excess of 730±90 candidates was found in the invariant J/ψπ+π− mass
spectrum (see figure 1.1). Also DØ [3] and BABAR [4] were soon able to confirm
the state in the decay to J/ψπ+π−.

However, despite four independent observations, it turned out to be very difficult
to answer the question ‘What is the X(3872)?’. The most natural answer was to
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Figure 1.1: Observed spectrum of m(J/ψπ+π−) −m(J/ψ) by Belle (left plot). The new
X(3872) state can be seen at ≈ 0.8 GeV/c2. The prominent signal at ≈ 0.6 GeV/c2 is
the long-known charmonium state ψ(2S). The right plot shows the observed spectrum of
m(J/ψπ+π−) by CDF with a clear signal peak at ≈ 3.87 GeV/c2.

assume that the X(3872) is a charmonium state — a quark model meson state which
contains a charm quark and a charm anti-quark. However, none of the possible
states could be matched with expectations as will be explained in chapter 1.5.1.
The intense search for alternative hypotheses and to some extent the eagerness to
abandon the conventional paths would have been much less pronounced, if there
had not existed a very interesting fact: the mass of the X(3872) is within the errors
identical to the combined mass of the D0 and the D0∗ mesons. This gave rise to a
further, exotic hypothesis: could the X(3872) be a bound state of those two mesons?
And if not, could it be something else? Anything different than a charmonium state
would be unprecedented in high energy physics and would open the window for a
completely new spectroscopy.

1.4 The X(3872): Early Measurements

After the discovery of the X(3872) in 2003, the amount of experimental knowledge
about this mysterious particle has steadily increased.

Information about its mass and width was already determined quite precisely in
the observation and confirmation publications. The Belle collaboration observed [1]
the X(3872) in the decay mode1 B+ → K+X(3872), X(3872) → J/ψπ+π−. A

1In this thesis the charge conjugate mode is always implied, unless explicitly stated otherwise.
This means that the decay B+ → K+X(3872) also addresses the charge conjugate decay B− →
K−X(3872).
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measurement of the mass resulted in

m = 3872.0 ± 0.6 (stat) ± 0.5 (syst) MeV/c2,

giving the particle its name. The signal peak, very narrow and compatible with
detector resolution effects, contained 35.7 ± 6.8 signal events (see figure 1.1). Belle
set an upper limit on the X(3872) width of

Γ < 2.3 MeV (90% C.L.)

at 90% confidence level (C.L.).

The decay of the X(3872) into the final state J/ψπ+π− proved to be quickly observ-
able by other experiments as well. The first confirmation was reported by the CDF
collaboration [2], observing 730 ± 90 signal events (see figure 1.1). Their measured
mass was

m = 3871.3 ± 0.7 (stat) ± 0.4 (syst) MeV/c2.

The DØ collaboration observed 522±100 events [3] and measured the mass difference
between the J/ψ and the X(3872) to be

∆m = 774.9 ± 3.1 (stat) ± 3.0 (syst) MeV/c2,

translating2 into a X(3872) mass of m = 3871.8 MeV/c2. Finally, the BABAR

collaboration was able to confirm the X(3872) [4] and measured the mass

m = 3873.4 ± 1.4 MeV/c2.

The mass and the width proved to be two extraordinary pieces of information. First,
the mass measurement puts the X(3872) mass right on top of the sum of the D0

and D0∗ masses. The mass is also in the midst of the mass range, where according
to the quark model, only charmonium states should exist. Second, the X(3872) is
very narrow. This immediately suggests that the X(3872) cannot decay into two
D-mesons, because this would be a strong decay, only requiring the exchange of one
gluon and resulting in a broad resonance.

Belle measured the branching ratio of theB+-decay into theX(3872) in the J/ψπ+π−

mode, relative to the one into the long-known ψ(2S) [1]

B(B+ → K+X(3872), X(3872) → J/ψπ+π−)

B(B+ → K+ψ(2S), ψ(2S) → J/ψπ+π−)
= 0.063 ± 0.012 (stat) ± 0.007 (syst).

Using PDG values for the ψ(2S) [6], one obtains the absolute branching fraction of
the decay of a B meson into the final state J/ψπ+π− via the X(3872):

B(B+ → K+X(3872), X(3872) → J/ψπ+π−) = (13.0±2.9 (stat)±0.7 (syst))×10−6.

2Here the J/ψ world average mass from 2006, compiled by the Particle Data Group (PDG) [5],
mJ/ψ,PDG = 3096.9 MeV/c2 was simply added.
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The absolute branching fraction was also measured by BABAR [7]. They obtain a
compatible value of

B(B+ → K+X(3872), X(3872) → J/ψπ+π−) = (8.4±1.5 (stat)±0.7 (syst))×10−6.

The search for other decay modes of the X(3872) other than into J/ψπ+π− did not
yield positive results. Prime decay channel candidates were radiative decays into
charmonium states, as one would expect for the X(3872) if it were a charmonium
state itself. Belle searched for χc1γ [1], a decay channel which would be one of the
most probable decay channels for certain higher charmonium states. No signal was
found and a relative limit to the J/ψπ+π− mode was set to be

Γ(X(3872) → γχc1)

Γ(X(3872) → J/ψπ+π−)
< 0.89 (90% C.L.).

Consequently Belle also searched for the decay into χc2 [8]. The result here was as
well negative. The following relative limit was set:

Γ(X(3872) → γχc2)

Γ(X(3872) → J/ψπ+π−)
< 1.1 (90% C.L.).

Belle [9] searched for decays into charged or neutral D-mesons. If allowed, this
strong decay would have a very high branching fraction — which already seemed
unlikely because of the narrow X(3872) width. Consequently, no signal was found
and the limits were set to be

B(B+ → K+X(3872), X(3872) → D0D̄0) < 6 × 10−5 (90% C.L.),

B(B+ → K+X(3872), X(3872) → D+D−) < 4 × 10−5 (90% C.L.),

compared to the value of B ≈ 10 × 10−6 in the observation channel.

Of further interest were decay modes similar to the discovery mode. BABAR inves-
tigated the decay channel X(3872) → J/ψη [10]. No signal was found and the limit
was set to be

B(B+ → K+X(3872), X(3872) → J/ψη) < 7.7 × 10−6 (90% C.L.).

BABAR searched for charged partners of the X(3872) [11] in decays involving a
neutral and a charged pion. No signal was found and the following limits were set:

B(B0 → K+X−, X− → J/ψπ−π0) < 5.4 × 10−6 (90% C.L.),

B(B− → K0
SX

−, X− → J/ψπ−π0) < 11 × 10−6 (90% C.L.).

No traces of a signal were found as well in the decay to J/ψπ0π0 [12]. This mode
probes the isospin of the dipion system in the decay to J/ψππ. For isospin I = 1,
one would expect to see no signal, while for I = 0 the ratio to the observation mode
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would be expected to be ≈ 50%, as is the case for the ψ(2S). As a result a limit for
this mode was set to

Γ(X(3872) → J/ψπ0π0)

Γ(X(3872) → J/ψπ+π−)
< 1.3 × Γ(ψ(2S) → J/ψπ0π0)

Γ(ψ(2S) → J/ψπ+π−)
(90% C.L.).

This is however not stringent enough to make a firm statement about the dipion
isospin. Information about the dipion isospin can also be obtained from the invariant
dipion mass distribution. Belle measured [1] that the mass of the dipion system
clusters at high masses, which suggests that the dipion system could be dominated
by an intermediate ρ0 resonance with isospin I = 1. However, the clustering at high
masses is also predicted for some I = 0 hypotheses.

Not a different decay channel, but a different production channel was probed by
the CLEO collaboration. They performed a search for the X(3872) in untagged γγ
fusion events and initial state radiation (ISR) e+e− annihilation [13]. No signal was
found and the following limits were set: For an X(3872) with positive C-parity and
spins zero or two — the possible quantum numbers of two untagged photons — the
limit is

(2J + 1)Γγγ(X(3872))× B(X → J/ψπ+π−) < 12.9 eV (90% C.L.).

For an X(3872) with quantum numbers JPC = 1−−, the limit is

Γee(X(3872)) × B(X → J/ψπ+π−) < 8.3 eV (90% C.L.).

Further searches in ISR events in e+e− annihilation also returned no signal. The
BES collaboration obtained a limit [14] of

Γee(X(3872)) × B(X(3872) → J/ψπ+π−) < 10 eV (90% C.L.),

and BABAR [15] sets a limit of

Γee(X(3872))× B(X(3872) → J/ψπ+π−) < 6.2 eV (90% C.L.).

From these experiments it appears very unlikely that theX(3872) is a vector particle.
This is not surprising since otherwise the X(3872) very likely would already have
been observed much earlier in e+e−-collision experiments.

At the Tevatron the X(3872) can be both produced via B-meson decays, as is the
case at Belle or BABAR, or in the fragmentation of the collision products. The
production fraction of X(3872) which stem from B decays is measured by CDF [16].
A value of

16.1 ± 4.9 (stat) ± 1.0 (syst) %

was determined. So only a very small fraction of the observed X(3872) particles at
the Tevatron stems from B decays.

DØ compared multiple quantities of the X(3872) → J/ψπ+π− decay to those of the
ψ(2S) → J/ψπ+π− decay [3]. Good agreement between the X(3872) and the ψ(2S)
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Figure 1.2: Comparison of various kinematic properties of the ψ(2S) and the X(3872) by
DØ. Shown are the fraction of candidates with (a) transverse momentum pT > 15 GeV/c,
(b) rapidity |y| < 1, (c) helicity angle cos(θπ) < 0.4, (d) decay length Lxy < 0.01, (e)
isolation fulfillment, and (f) helicity angle cos(θµ) < 0.4.

in the tested quantities was observed (see figure 1.2), indicating no major differences
in the production and decay mechanisms between the ψ(2S) and the X(3872).

Finally, Belle performed an angular analysis for the quantum numbers JPC = 1+−.
By comparing predictions to measurements Belle disfavors the assignment that the
X(3872) is a h′c(1

+−) charmonium state [8].

1.5 The X(3872): Possible Interpretations

Immediately after the discovery of the X(3872) and the measurement of the first
experimental properties the X(3872) became a subject of discussion. The initial
search by Belle was motivated by the search for new charmonium states. The prop-
erties of the X(3872) did however not fit into charmonium model predictions, so
that the initial plan to assign a charmonium state to the X(3872) quickly changed
from the question ‘Which charmonium state can we assign to the X(3872)?’ to ‘Can
we assign a charmonium state to the X(3872) at all?’.

1.5.1 Charmonium Hypothesis

Since the final state of the decay modeX(3872) → J/ψπ+π− contains the J/ψ, a low-
energetic charmonium state, it is natural to assume that also the higher-energetic
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initial state contains a c-quark and an c̄-quark. A charmonium state is the simplest
configuration of a stable system containing those two quarks. Heavier quarks (e.g. a
b-quark) in the initial state are very unlikely, since the known mesons containing a
b-quark are much heavier than 3.87GeV/c2. A charmonium state is the conservative
quark model hypothesis for the X(3872) and because of this the obvious place to
start searching for candidates.

A charmonium system is a bound system of a c-quark and a c̄-quark. The hydrogen
atom is a rather close analogy. An even better analogy, taking into account the
identical masses of the constituents, is the positronium. The dominating force at
short-distances between the quarks is described by single-gluon-exchange, while at
larger distances confinement becomes the dominant factor. The potential thus is
commonly described by a Coulomb-like potential for small distances and a linear
increase for larger distances. The energy levels of such a system can be found in
analogy to the hydrogen atom by solving a non-relativistic Schrödinger equation [17].

The spectroscopy of charmonium state uses

• the quantum number for radial excitation n,

• the relative orbital angular momentum between the quarks L = 0,1,2,. . . ,
denoted as S,P ,D,. . . ,

• the combined spin S = 0, 1 of the two quarks,
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• the total angular momentum J = L⊕ S

to define a state in the notation: (n+ 1)2S+1LJ . Figure 1.3 shows the charmonium
spectrum with emphasis on the observed states. However, there is also an alterna-
tive nomenclature for the known, low-lying states that assign the names after the
convention of the Particle Data Group. For charmonia, it uses the symbols

• η for L-even singlet states (S=0),

• ψ for L-even triplet states (S=1),

• h for L-odd singlet states (S=0),

• χ for L-odd triplet states (S=1).

A very important physical aspect of the charmonium states are their quantum num-
bers P and C, which describe the behavior of the wave-function of the state under
the parity operation and the charge-parity operation. Those quantum numbers de-
fine the physical behavior of the whole cc̄-system, compared to n, L, and S which
are important to describe the internal dynamics. They relate as follows:

P = (−1)L+1,

C = (−1)L+S.

The lightest charmonium state is the ηc with JPC = 0−+. The two quark spins
arrange to have total spin S = 0, the orbital angular momentum between the quarks
is L = 0 as well, so that the total angular momentum is J = 0. This state thus is
labelled 11S0 in spectroscopic notation. The other state with L = 0 but with S = 1
is the most familiar charmonium state, the J/ψ (13S1, J

PC = 1−−). The first radial
excitations of those two states are the η′c and the ψ′, the second commonly referred
to as ψ(2S). In spectroscopic notation they are labelled 21S0 and 23S1, respectively.

The set of lightest charmonium states with L = 1 are called hc (11P1, J
PC = 1+−)

for the spin-singlet state with S = 0, and χc for the spin triplet states with S = 1:
χc0 (13P0, J

PC = 0++), χc1 (13P1, J
PC = 1++), χc2 (13P2, J

PC = 2++).

Those are all of the unambiguously known states. The main reason why no higher
states are known is the fact that higher states mostly have masses above the DD̄
thresholds:

• DD̄ at a mass of ≈ 3730 GeV/c2,

• D∗D̄ at a mass of ≈ 3875 GeV/c2,

• D∗D̄∗ at a mass of ≈ 4015 GeV/c2.
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These thresholds are important, because states with masses higher than those thresh-
olds are kinematically allowed to decay into two D-mesons. If this decay is not
suppressed for other reasons, it will become highly dominant since it is a strong
decay involving only low-energetic (often called ‘soft’) gluons. The fast decay into
DD̄ translates to a broad state in mass, so that it is experimentally very difficult to
isolate these states. This is not true for states which cannot decay to DD̄ for other
reasons, for example because of conservation of parity. These states can be narrow
even above the DD̄ threshold.

C-parity and isospin are important quantum numbers for the discussion of the pos-
sible charmonium assignments to the X(3872). In the observation mode X(3872) →
J/ψπ+π− the pions in the dipion system can be either in relative S-wave, forming
the quantum numbers JPCππ = 0++, or in relative P -wave (JPCππ = 1−−) — higher
angular momenta are suppressed at the low dipion energies that are available in the
X(3872)-decay. Because the J/ψ has C = −1, a C-even assignment of the X(3872)
translates into a C-odd (i.e. JPCππ = 1−−) assignment for the dipion system, and vice
versa. In the X(3872) decay, the C-parity is closely connected to the isospin. The
isospin of a vector state dipion system is I = 1, since the ρ meson is the only dipion
resonance which is kinematically allowed. However, a charmonium state always has
isospin I = 0 (because it does not contain any light quarks), and can only decay into
isospin I = 0 final states. An assignment which implies C = +1 for the charmonium
state thus implies isospin violating effects in the decay.

In order to find good charmonium candidates, the expected spectrum is investigated.
Good X(3872) candidates are both the unobserved D-wave states, as well as higher
radial excitations of the S- and P -wave states. F -wave states are neglected since
they are expected to have masses higher than 4 GeV/c2 [19]. These possible states
are:

• The 31S0 state (η′′c ): The η′′c has quantum numbers JPC = 0−+. The main
reason that disfavors the assignment to the X(3872) is the predicted mass for
the 31S0, which is ≈ 4000 − 4100 MeV/c2 [19, 20] and thus too high. It is in
addition very unlikely that the radially excited state has a smaller total decay
width than the ground state, the ηc, with Γ = 25.5 ± 3.4 MeV/c2 [5]. (The
limit on the X(3872) width is smaller than 2.3 MeV/c2 at 90% C.L.)

• The 33S1 state (ψ(3S)): This state with JPC = 1−− would be allowed to
decay into DD̄, leading to a large expected decay width. In addition, one
would expect for any narrow, low-energetic, prominent vector state that it
would have already been observed in electron-positron collisions.

• The 21P1 state (h′c): The h′c is in most models expected to have masses higher
than 3900 MeV/c2 [19, 20]. The assignment to a JPC = 1+− state is also
strongly disfavored from the comparison of the expected decay angular distri-
bution to measured data [21].

• The 23P0 state (χ′
c0): Since the χ′

c0 can decay into DD̄, the narrow observed
width of the X(3872) is a strong argument against this mode. In addition,
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no signal was observed in ISR events, where states with JPC = 0++ can be
produced.

• The 23P1 state (χ′
c1): The mass of the χ′

c1 with JPC = 1++ is expected to be
≈ 3930 − 4000 MeV/c2 [19, 20]. In addition, the expected width of this state
is greater than 10 MeV/c2 [20].

• The 23P2 state (χ′
c2): The assignment as a χ′

c2, a charmonium state with
JPC = 2++, is improbable for various reasons. It can decay to DD̄, leading to
a large expected width, its expected mass is higher [19, 20], and no signal was
observed in ISR events.

• The 11D2 state (ηc2): This hypothesis would assign the quantum numbers
JPC = 2−+. This decay is isospin-violating (as for every charmonium-state
with C-parity +1) and one would thus expect a very tiny decay width into the
final state J/ψπ+π−. Scenarios to explain the isospin breaking are possible,
however this would require further assumptions.

• The 13D1 state (φc1): This state has the quantum numbers JPC = 1−−. The
same arguments as for the 33S1 apply.

• The 13D2 state (φc2): For this state with JPC = 2−− a ≈ 70 MeV/c2 lower
mass is expected [19, 20]. One should also observe a signal in the decay mode
X(3872) → χc1γ, which yielded only experimental limits.

• The 13D3 state (φc3): Similar arguments as for the 13D2 apply for the 13D3

with quantum numbers JPC = 3−−. The expected, but unobserved decay
is in this case X(3872) → χc2γ. Interestingly, the decay 13D3 → DD̄ is
allowed, but still yields a small expected width. The reason is that in order
to satisfy angular momentum conservation, a relative angular momentum of
L = 3 between the two D-mesons would be required, which suppresses the
strong decay.

No single state shows good agreement between theoretical model expectations and
experimental observations. In order to match the X(3872) to any of these states,
changes are required for the charmonium models. Taking into account possible
model variations, the unobserved D-wave states 11D2, 13D2, and 13D3 are most
likely to be explainable, because they have no gauge for mass splittings from exper-
iment.

1.5.2 Molecular Hypothesis

In absence of a fitting charmonium hypothesis, attention soon focused on the peculiar
mass of the X(3872), which is in remarkable agreement with the sum of the D0- and
D0∗-masses. The measured masses [6, 22] are

m(X(3872)) = 3871.4 ± 0.6 MeV/c2
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and

m(D0) +m(D0∗) = 1864.84 ± 0.17 MeV/c2 + 2006.97 ± 0.19 MeV/c2

= 3871.81 ± 0.36 MeV/c2.

It can be seen that the mass of theX(3872) is within the errors identical to the sum of
the D0- and D0∗-masses, so that the hypothesis of a bound state of these two mesons
suggests itself. In addition, a molecular model also would explain the apparent
breaking of isospin symmetry if the X(3872) decays via X(3872) → J/ψρ0. The
mass difference between the D0D0∗ and the D+D−∗ threshold is ≈ 8MeV/c2. So the
regular isospin I = 0 wave function, (|D0D0∗〉+ |D+D−∗〉)/

√
2, shows severe isospin

breaking because the contribution from D+D−∗ is above threshold and suppressed.
This in turn means that the wave function of a molecular state is not an isospin
eigenstate and that there is a significant I = 1 contribution.

The molecular hypothesis, like any of the alternative hypotheses, does not constitute
‘new physics’ in a sense of new fundamental matter particles — nothing in the theory
of strong interactions (QCD) explicitly prevents such a molecular state. This being
said, a positive identification would still be revolutionary for the understanding of
matter. What other kinds of hadronic bound states could then exist? At which
energies? How would they interact with the states we know?

The general idea of molecular hadronic states is nothing new, of course. A possible
application of the idea was already tested for early known states as the a0(980) — as
a possible candidate for a KK̄-molecule [23]. However, no conclusive result could be
obtained, mostly because states from the light-quark sector have large decay widths
and overlap with nearby states. The possibility of the bound interaction of mesons
with charm content can be traced back to works of Voloshin and Okun [24] in 1976.
The charmonium state ψ(4040), which initially did not fit well into the charmonium
picture because of an unexpectedly high decay rate into DD̄∗, was proposed to be
a charmed molecule by De Rujula et al. [25]. Later the high DD̄∗ rate was resolved
differently and the ψ(4040) could be assigned to the charmonium state 33S1. So the
idea of hadronic molecules has been around for quite some time, but no compelling
evidence has yet been found.

The basic hypothesis of a bound state between D0 and D0∗ is suggested in different
ways. Törnqvist [26] discusses a deuteron-like system (‘deuson’) where the D0 and
D0∗ mesons are bound exclusively by long-range pion exchange. In this model only
states with quantum numbers JPC = 1++ or JPC = 0−+ would be bound, for others
pion exchange is repulsive or too weak to form bound states. This model can also
be applied to the b-quark sector to predict b-deusons at masses of ≈ 10.55 GeV/c2,
which are also more strongly bound. The question whether a system, only comprised
of D0 and D0∗, is able to form a bound state is challenged by Liu et al. [27].

Swanson [28] extends Törnqvist’s model by adding short-range quark/gluon inter-
actions to the long-range pion exchange. Assuming an S-wave coupling of D0 and
D0∗ to be the main contribution to the state, the quantum numbers JPC = 1++ are
predicted. Another refinement is the admixture of J/ψρ0, J/ψω and D+D− to the
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basic D0−D0∗ wave-function. The model predicts large decay widths into J/ψπ+π−

and J/ψπ+π−π0 of similar magnitude. No DD̄ molecules are expected, however a
rich spectrum of D∗D̄∗, BB̄∗, and B∗B̄∗ should exist.

Other works on the subject [29, 30, 31, 32] add further predictions to the molecular
hypothesis. For once, even a bound state of lighter mass than the combined D0-D0∗

mass should be observable as a threshold enhancement in the D0D̄0π or D0D̄0γ
spectrum3. Another expectation is that the branching fraction of the decay B0 →
X(3872) K0 should be suppressed compared to the decay B+ → X(3872) K+ by
an order of magnitude.

1.5.3 Multiquark Hypotheses

A different approach to the X(3872) is used in the so-called multiquark hypotheses,
which use four quarks to form a state. Multiquark states were already proposed in
the 1970’s [33]. Especially the a0(980) and f0(980) states were proposed as good
candidates. However, contradictory predictions and missing experimental evidence
resulted in insufficient support for the 4-quark hypothesis.

The unknown nature of the X(3872) led to a resurgence of the 4-quark model.
Various different implementations of the general 4-quark model have been suggested
that can accommodate theX(3872) as a multiquark state containing two light quarks
and two charm quarks [34, 35, 36, 37, 38, 39, 40].

Most interesting from an experimental point of view is the model of Maiani et

al. [34, 41], because it makes strong and verifiable predictions. This model is a
‘diquark-antidiquark’ model which divides the four constituent quarks into a [cq][Q̄q̄′]
structure with light quarks q, q′ = u, d and a heavy quark Q = c, s, constraining itself
on hidden and open charm states. The quarks are grouped into color triplet scalar or
vector clusters. The interactions between the two clusters is dominated by spin-spin
interactions. Binding is achieved by the color forces of gluon exchange – in contrast
to the molecular picture, which is dominated by long-range colorless pion exchange.

The model predicts a number of states, most importantly four states related to the
X(3872), X+ = [cu][c̄d̄], X− = [cd][c̄ū], X0

u = [cu][c̄ū], and X0
d = [cd][c̄d̄]. The

two neutral states mix to form the physical states Xlow and Xhigh, described by the
mixing angle θ:

Xlow = X0
u cos θ +X0

d sin θ,

Xhigh = −X0
u sin θ +X0

d cos θ.

Because of this, isospin is broken for the neutral mass eigenstates, and consequently
in their strong decay as well. The mass difference between the two states is expected
to be

m(Xhigh) −m(Xlow) =
7 ± 2

cos(2θ)
MeV/c2.

3The D0∗ decays to D0π0 or D0γ.
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The fact that apparently only one narrow neutral state is observed at the B-factories
is explained by stating that the two states Xlow and Xhigh populate the decay chan-
nels B+ → X(3872)K+ and B0 → X(3872)K0

S differently4. The ratio of these two
decays is expected to be of the order of ≈ 1.

1.5.4 Alternate Hypotheses

Charmonium Hybrid

Hybrid mesons combine a regular meson state, in our case charmonium, with an
excited gluonic degree of freedom. In fact, lattice gauge theory and hadron models
predict a rich spectrum of charmonium hybrid mesons [42, 43]. Several predictions,
either using the ‘flux-tube model’ [44, 45, 46] or lattice calculations [47], expect cc̄g
hybrids in the mass range of 4.0 − 4.2 GeV/c2. Of special interest are the states
with quantum numbers JPC = 0+−, 1−+, and 2+− since those cannot be obtained
with a simple cc̄ charmonium model and would, if observed, unambiguously proof
an unconventional state.

Li [48] suggests the hybrid hypothesis for theX(3872) and predicts a dominant decay
X(3872) → J/ψgg. The X(3872) should also have a sizable branching fraction to
J/ψσ.

The deviation of the measured mass of 3.87 GeV/c2 to the expected masses above
4.0 GeV/c2 is a serious argument against the hybrid hypothesis. However, since no
experimental ‘gauge’ exists to guide systematic effects, predicted masses may shift
significantly.

Cusp/Threshold Effect

In contrast to exotic models, Bugg [49, 50, 51] ascribes the resonance structure of
the X(3872) to a possible threshold cusp. These cusps can appear in any process,
at the threshold where a coupled channel opens. In the case of the X(3872), the
resonance-like structure is explained in a way that randomly produced DD̄∗ final
states with low relative momentum de-excite into open channels like J/ψππ and
produce a cusp in the J/ψππ mass spectrum.

Kalashnikova [52, 53] constructs a coupled channel model of the cc̄ system with
couplings to the DD̄ continua (DD̄, DD̄∗, D∗D̄∗, . . . ). In the calculations for the
different charmonium states the χ′

c1 stands out, because, in addition to the regular
χ′
c1 resonance at ≈ 4 GeV/c2, a virtual bound state just above the DD̄∗ threshold

is predicted, which produces a cusp in the J/ψππ final state.

4The need to investigate two separate decay modes is not an issue for the inclusive data samples
studied in hadron colliders.
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Glueball

Seth [54] proposes the assignment of a glueball to the X(3872) — a bound state
containing only gluons, no quarks. This model is based on the mass calculations by
Morningstar and Peardon [55], who predict a state with quantum numbers 1−− at
a mass of m ≈ 3850 MeV/c2.

This model assumes a small admixture of cc̄ quark content stemming from the ψ(2S)
which is responsible for the decay to J/ψπ+π−. Then, as for the ψ(2S), also the
decays X(3872) → J/ψπ0π0 and X(3872) → J/ψη are expected. This, together
with the quantum number prediction, can be used to test the hypothesis.

1.5.5 Summary of Hypotheses

In order to explain the X(3872), three major hypotheses stand out: the charmo-
nium, the molecule and the multiquark state. The charmonium hypothesis is strong,
because it is after all a well-proven model for other states. It however requires ad-
justment to explain the X(3872).

Next to the charmonium hypothesis, all other hypotheses are exotic in a sense, that
they deviate from the known structures of matter in high energy physics. Be it
a molecule or a multiquark state, an unambiguous identification would imply the
existence of similar states and maybe even a completely new spectrum of particles.
Although this is an intriguing, maybe even probable situation, care is required to
draw this conclusion.

1.6 Recent Experimental Developments

The measurements up to the end of 2004 allowed no significant insight into the
X(3872) nature. They allowed no strong rejection of any hypothesis, either. The
assignment as one of the charmonium states was doubtful, however far from ex-
cluded. The number of alternative hypothesis was growing, with no good handle for
verification. This changed in 2005, when measurements started to shed light onto
the nature of the X(3872).

First evidence for other decay modes was finally seen in 2005. Belle found evidence
(4.0 σ) for the decay mode X(3872) → J/ψγ [56], see figure 1.4. The branching
fraction was determined as

B(B+ → K+X(3872), X(3872) → J/ψγ) = (1.8 ± 0.6(stat) ± 0.1(syst)) × 10−6.

This allows to determine the partial width ratio:

Γ(X(3872) → J/ψγ)

Γ(X(3872) → J/ψπ+π−)
= 0.14 ± 0.05.
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Figure 1.4: The independent pieces of evidence for the decay X(3872) → J/ψγ by Belle
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Figure 1.5: The indication for the decay mode X(3872) → J/ψπ+π−π0 by Belle. Both the
signal itself and the interpretation as X(3872) → J/ψω need independent confirmation.

Since the significance of the signal is not unambiguously convincing, it was very
helpful that this decay mode was independently confirmed by BABAR [57], albeit
with low significance as well (see figure 1.4). BABAR observed the X(3872) in the
decay to J/ψγ with a significance of 3.4 σ. Their determination of the branching
fraction yields

B(B+ → K+X(3872), X(3872) → J/ψγ) = (3.3 ± 1.0(stat) ± 0.3(syst)) × 10−6.

Belle also found evidence (4.3 σ) [56] for the decay X(3872) → J/ψπ+π−π0 (see
figure 1.5), which was interpreted as the decay X(3872) → J/ψ ω. This is a very
important decay mode to understand the internal X(3872) dynamics. Usually, this
decay should be suppressed due to the fact that it is kinematically forbidden and can
only proceed if the ω fluctuates to a lower mass. Because the ω is very narrow this
should happen very rarely. In exotic models there are however different mechanisms
that allow the decay to a virtual, off-shell ω that can enhance the ratio. An unex-
pectedly high branching ratio thus would indicate exotic content in the X(3872).
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The branching fraction to the decay mode X(3872) → J/ψπ+π− is measured to be

B(X(3872) → J/ψπ+π−π0)

B(X(3872) → J/ψπ+π−)
= 1.0 ± 0.4(stat) ± 0.3(syst).

Those results are of primary importance for the quantum numbers of the X(3872).
Both the ω and the photon are vector particles, which fixes the C-parity of the
X(3872) to CX(3872) = C(J/ψ) · C(γ/ω) = +1. Further conclusions should however
be drawn with care, especially if one wants to base arguments on the numerical
values of the branching fractions, since the statistics is very low. The decay into
J/ψω is not confirmed up to the present day.

Belle updated its investigation of the dipion mass behavior in the decay X(3872) →
J/ψπ+π− [58]. It was concluded that the best fit is obtained by the interpretation
of the ππ-system as a ρ0 meson, which is in relative angular momentum L = 0 with
the J/ψ. This was investigated by CDF [59] as well. The dipion mass spectrum
was measured with higher statistics and compared to various theoretical hypotheses
(see figure 1.6). As a result it was shown that, although a decay via a ρ0 indeed
gives a very good fit result, the uncertainty on the choice of form factor parameters
does not allow an unambiguous separation between the L = 0 or L = 1 case. The
good agreement of the dipion mass shape with an intermediate ρ0 agrees with the
C = +1 assignment for the X(3872). The question, whether the dipion system is
in a relative S-wave or P -wave configuration with the J/ψ, is important for the
quantum numbers as well. This issue will be covered in chapter 3.1 in more detail,
for now it suffices to say that the quantum numbers JP = 0+, 1+, 2+ are allowed for
a relative S–wave, while JP = 0−, 1−, 2−, 3− are allowed for a relative P -wave.

Belle expanded their early angular analysis by testing more quantum number com-
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binations [58]. In combination with the observation of the J/ψγ mode and their con-
clusions about the behavior of the dipion-mass spectrum in the decay X(3872) →
J/ψπ+π−, Belle concludes that the assignment 1++ is favored, but 2++ not ruled
out.

Furthermore, the angular correlations in the decay X(3872) → J/ψπ+π− were stud-
ied, which is the main result of this thesis and described in detail in chapter 3.
It was published in reference [60]. Based on angular distributions alone, only the
quantum number hypotheses 1++ and 2−+ can be accommodated with the observed
data, thus drastically limiting the number of possible charmonium states, excluding
the glueball hypothesis, and strengthening the molecular and multiquark models.

BABAR investigated a possible difference in the behavior between X(3872) particles
from B+ and B0 decays [7]. They observed a mass difference in the two decay modes
of

∆m = 2.7 ± 1.6(stat) ± 0.4(syst) MeV/c2.

For the B+ decay mode they also measured the X(3872) width

Γ(X(3872)) = 1.1 ± 1.5(stat) ± 0.2(syst) MeV,

which corresponds to the limit

Γ(X(3872)) < 3.3 MeV (90% C.L.).

The two branching fractions were measured to be:

B(B0 → K0
SX(3872), X(3872) → J/ψπ+π−) = (3.5 ± 1.9(stat) ± 0.4(syst)) × 10−6,

B(B+ → K+X(3872), X(3872) → J/ψπ+π−) = (8.4 ± 1.5(stat) ± 0.7(syst)) × 10−6,

forming the ratio
R = 0.41 ± 0.24(stat) ± 0.05(syst).

The same measurement was performed by Belle [61]. They determined the mass
difference to be

∆m = 0.22 ± 0.90(stat) ± 0.27(syst) MeV/c2,

compatible with no mass difference. The relative branching fraction is

B(B0 → K0
SX(3872))

B(B+ → K+X(3872))
= 0.94 ± 0.24(stat) ± 0.10(syst).

These measurements are important for exotic interpretations, which predict more
than one neural state and different branching fractions in neutral and charged B-
decays. The experimental values from Belle and BABAR are compatible, but they
are both based on low statistics. The central values do neither support the existence
of two separate neutral states (predicted for multiquark hypotheses), nor do they
indicate an order-of-magnitude difference in the B0 and B+ decay modes (predicted
for molecular hypotheses).
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Figure 1.7: The invariant mass spectra of the D0D̄0π0 system observed by Belle (left) and
BABAR (right). Both show an enhancement right above threshold.

In 2006 Belle reported a first observation of a threshold enhancement in the decay
B → D0D̄0π0K [62], interpreted to stem from a possible X(3872) → D0D̄0∗ decay5.
A peak above threshold is observed (see figure 1.7) with a measured mass of

m = 3875.4 ± 0.7(stat)+1.2
−2.0(syst) MeV/c2.

The significance of the enhancement is 6.4 σ, where the two decay channels B+ →
D0D̄0π0K+ B0 → D0D̄0π0K− were combined.

The calculated branching fraction yielded a high value of

B(B → D0D̄0π0K) = (1.27 ± 0.31(stat)+0.22
−0.39(syst)) × 10−4,

which is by a factor of ≈ 10 higher than for the decay of the X(3872) into J/ψππ.

A similar structure was later observed by BABAR [63] (see figure 1.7). They inves-
tigate the invariant m(D̄∗0D0) spectrum in decays of a B+(B0) to the final states
D̄∗0D0K+(K0

S) or D̄0D∗0K+(K0
S). A peak structure with a statistical significance

of 4.9 σ is observed at a mass of

m = 3875.1+0.7
−0.5(stat) ± 0.5(syst) MeV/c2

with a width of
Γ = 3.0+1.9

−1.4(stat) ± 0.9(syst) MeV.

The big question in conjunction to this decay is whether this enhancement is related
to the X(3872). Since the central mass values are different by more than four stan-
dard deviations, this question is not easily answered. Most theoretical approaches
tend to see it as the same state and attribute the higher mass to the difference in
line shape between different decay channels [53, 64, 65, 66]. It could, however, fit as
well into the multiquark approach as the observation of the expected second neutral
particle.

5The possible observation of the decay X(3872) → D0D̄0∗ does not contradict the fact of the
unobserved X(3872) → D0D̄0 mode, because the spin of the D̄0∗ is different compared to the D̄0.
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1.7 Summary and Outline

The experimental results of the last sections are summarized in tables 1.4 and 1.5.
A separate table is used for the recently observed X(3875), for which it is not clear
if it is the same particle as the X(3872). Table 1.4 lists the measurements for the
X(3872), while table 1.5 gives an overview of the results for the X(3875).

This chapter described that the discovery of theX(3872) brought up questions about
our understanding of matter in high energy physics that are still unanswered. While
the number of experimental evidence is growing and also the theoretical understand-
ing is making progress, there is still no ‘silver bullet’ which unambiguously would
point to the nature of the X(3872).

The most favorite options are at the moment the assignment as a molecular D0D̄0∗

state, the multiquark hypothesis which uses four quarks to form the X(3872), and
the conventional charmonium state — or a mixture of them.

After the experimental apparatus is introduced in chapter 2, this thesis investigates
two different properties of the X(3872). On the one hand the quantum numbers
JPC of the X(3872) will be constrained, which will be described in chapter 3. On
the other hand the invariant mass shape of the X(3872) will be studied. This will
clarify whether the X(3872) mass shape is compatible with two neutral states, as
predicted by multiquark hypotheses. If only one peak is found, its precise mass will
be measured, which is of crucial importance for the theoretical understanding of the
molecular hypothesis. This part of the analysis is described in chapter 4. The thesis
will conclude in chapter 5 with a discussion of the implications of the results and an
outlook.
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property measurement

mass m

3872.0 ± 0.6 ± 0.5 MeV/c2 [1]
3871.3 ± 0.7 ± 0.4 MeV/c2 [2]
3871.8 ± 3.1 ± 3.0 MeV/c2 [3]
3871.3 ± 0.6 ± 0.1 MeV/c2 [7]

width Γ
1.4 ± 0.7 MeV, < 2.3 MeV (90% C.L.) [1]

1.1 ± 1.5 ± 0.2 MeV, < 3.3 MeV (90% C.L.) [7]

JPC
1++, 2++ [58]
1++, 2−+ [60]

dipion system prefers high masses, ρ-like [58, 59]

decay channels
J/ψπ+π− [1, 2, 3, 67]

J/ψγ [56, 57]
J/ψπ+π−π0 [56]

unsuccessful searches

γχc1 [1], γχc2 [8]
D0D̄0 [9], D+D− [9]

J/ψη [10]
J/ψπ−π0, J/ψπ+π0 [11]

J/ψπ0π0 [12]

mass difference ∆m 2.7 ± 1.3(stat) ± 0.2(syst) MeV/c2 [67]
in B+/B0 decays 0.22 ± 0.90(stat) ± 0.27(syst) MeV/c2 [61]

branching fractions

B(B+ → K+(J/ψπ+π−)X(3872)) = (13.0 ± 2.9 ± 0.7) × 10−6 [1, 6]

B(B+ → K+(J/ψπ+π−)X(3872)) = (8.4 ± 1.5 ± 0.7) × 10−6 [7]

B(B0 → K0
S(J/ψπ

+π−)X(3872)) = (3.5 ± 1.9 ± 0.4) × 10−6 [7]
B(B0→K0X(3872))
B(B+→K+X(3872))

= 0.94 ± 0.24 ± 0.10 [61]

B(B+ → K+(J/ψγ)X(3872)) = (1.8 ± 0.6 ± 0.1) × 10−6 [56]

B(B+ → K+(J/ψγ)X(3872)) = (3.3 ± 1.0 ± 0.3) × 10−6 [57]
B(X(3872)→J/ψπ+π−π0)
B(X(3872)→J/ψπ+π−)

= 1.0 ± 0.4 ± 0.3 [56]

Table 1.4: A summary of the gathered experimental findings on the X(3872).

property measurement

mass m
3875.4 ± 0.7+1.2

−2.0 MeV/c2 [62]
3875.1+0.7

−0.5 ± 0.5 MeV/c2 [63]

width Γ 3.0+1.9
−1.4 ± 0.9 MeV [63]

observed decay channel D0D̄0π0 [62, 63]

branching fraction B(B → D0D̄0π0K) = (1.27 ± 0.31+0.22
−0.39) × 10−4 [62]

Table 1.5: A summary of the gathered experimental findings on the ‘X(3875)’.
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The CDF II Experiment

The CDF II experiment is hosted by the Fermi National Accelerator Laboratory,
abbreviated as ‘FNAL’ and most commonly referred to as ‘Fermilab’. Fermilab is a
U.S. Department of Energy national laboratory, specializing in high-energy particle
physics and hosting multiple particle physics experiments. It is located in the United
States, in Batavia, Illinois — 50 km west of Chicago. Figure 2.1 shows an aerial
view of the main part of the laboratory.

2.1 The Tevatron

The most striking structure of the Fermilab is the proton-antiproton collider ‘Teva-
tron’. The Tevatron is a symmetric proton-antiproton collider ring, i.e. protons and
antiprotons of the same energy are brought to collision. The Tevatron has been the
accelerator with the highest available center-of-mass energy in the world since its
start in 1995.

During the first phase of operations from 1992 to 1996 — often referred to as ‘Run
I’ — the energy of the collisions was

√
s = 1.8 TeV. This is also responsible for the

name of the accelerator (‘TeV-atron’). The most important measurement during
Run I was the discovery of the top-quark. The second phase (‘Run II’) started in
2001 and is still ongoing. Current plans are to run until 2009, running into 2010
may however still be possible. For Run II the Tevatron was upgraded to achieve a
higher luminosity, as well as a center-of-mass energy of

√
s = 1.96 TeV.

2.1.1 The Accelerator Chain

In order to accelerate and finally collide the protons and antiprotons, a sophisticated
system of accelerator steps is in place. A schematic overview of the accelerator chain
is shown in figure 2.2.

The first step in the acceleration chain is the production and pre-acceleration of
negatively ionized hydrogen atoms in a Cockroft-Walton-type accelerator. The ions
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Figure 2.1: Aerial view of the main part of the Fermilab facility. Although the Tevatron
itself is of course underground, the maintenance road, located directly inside the ring,
nicely indicates its course in the center of the picture.

reach an energy of 750 keV. The Linear Accelerator (‘Linac’) is the next level of
acceleration for the hydrogen ions. They get accelerated to an energy of 400 MeV
and are then transferred into the ‘Booster’.

The Booster is a synchrotron of 75m radius and serves two purposes. First, it strips
the electrons of the negatively charged hydrogen atoms at injection, so that only the
bare proton remains. Second, the protons are accelerated further up to an energy
of 8 GeV, before they get transferred to the ‘Main Injector’.

The Main Injector is a circular synchrotron as well, however seven times larger than
the Booster. The incoming protons are used for separate purposes. In Tevatron
operations they are needed for:

1. Antiproton production — The process of antiproton production, often referred
to as ‘stacking’, uses accelerated protons from the main injector and transfers
them to the antiproton source. There, the protons hit a nickel target, produc-
ing a spray of random secondary particles. From this spray, antiprotons with
an energy of 8 GeV are selected and subsequently cooled in the ‘Debuncher’
and the ‘Accumulator’. From there, they are transferred further to the ‘Recy-
cler’. The name ‘Recycler’ does not reflect the actual role of this antiproton
storage ring. While its original purpose was to gather and ‘recycle’ antiprotons
from pp̄-collisions, it is now used to accumulate a large number of antiprotons
before they are used for collisions.
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Figure 2.2: Schematic overview of the Tevatron accelerator chain.
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2. Acceleration — As a final step before acceleration in the Tevatron, the protons
from the Booster are accelerated to an energy of 150 GeV, before they get
injected as a single bunch into the Tevatron. This procedure is repeated 36
times, leading to 36 proton bunches in the Tevatron. The same procedure is
applied for the antiprotons from the Recycler, resulting in a 36 × 36 bunch
structure in the Tevatron.

The final acceleration takes place in the Tevatron. The Tevatron, although respon-
sible for the final acceleration of the particles to E = 980GeV, is primarily a storage
ring. This allows to remain in collision mode for a long time. It is also the reason
why the time from filling the Tevatron until dumping the beam is referred to as a
‘store’.

The proton and antiproton beams are brought to collision at two interaction points:
B0, where the CDF II experiment is located, and D0, which also was used to name
the detector and the collaboration.

The time limiting process in the procedure is the accumulation of enough antipro-
tons. Once this is achieved, collisions are initialized in the following order.

1. Loading protons from the Main Injector into the Tevatron (≈ 10 minutes).

2. Loading antiprotons from the Main Injector into the Tevatron (≈ 45 minutes).

3. Increase the beam energy to 980 GeV (‘Ramping’, ≈ 1 minute).

4. Start collisions by activating magnets, bringing the two separate beams to
collision.

5. Clean the beam environment (‘Scraping’, ≈ 10 minutes). This process cleans
the ‘halo’ of the beam, which is necessary because the particles from this halo
usually do not take part in the collisions, but have a high probability to interact
with the beam confinement material — potentially causing irreparable damage
to sensitive detector parts.

6. Power on detectors, record collisions.

7. Continuously produce collisions for ≈ 24 hours.

8. Dump the beam into absorber material and start over.

2.1.2 Luminosity

The luminosity is a quantity which describes the number of potential interactions.
It is the main criterion for the collider performance. The instantaneous luminosity
L is given by

L = n · f · NpNp̄

2π(σ2
p + σ2

p̄)
· F,
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where n is the number of bunches, f is the revolution frequency, and Np (Np̄) is the
number of protons (antiprotons) per bunch. σp (σp̄) is the average transverse width
of the proton (antiproton) bunch structure. F is a form factor efficiency because of
the non-optimal bunch-structure, which is of the order of 70%.

The goal of the Tevatron is to obtain a luminosity as high as possible. This translates
into more observable interactions at the experiments. The two important quantities
connected to this are the time-integrated luminosity, Lint =

∫
L dt, and the cross

section of a certain physics process σ, which corresponds to the probability to obtain
this physics process. They directly give the expected number of occurrences for a
given process by

N = σ · Lint.

The convenient unit for the cross section is the ‘picobarn’ (pb), with 1pb = 10−36cm2.
The time integrated luminosity uses inverse picobarn (pb−1). For the instantaneous
luminosity SI units are usually used. While the cross section for a certain process
is constant within a fixed environment, the expected number of occurrences scales
directly with the integrated luminosity. Since most of the processes one is interested
in have a very small cross section, one needs a high integrated luminosity to observe
a sufficient amount of events.

The instantaneous luminosity changes during a store. The initial luminosity is the
luminosity at the beginning of the store. During the store the luminosity drops
roughly exponentially, since the amount of protons and antiprotons decreases (be-
cause of collisions or losses) at a rate proportional to their number. After a certain
amount of time it is more efficient to abort the store and start a new one, which is
usually after ≈ 24 hours — this is however highly influenced by other operational
conditions.

Figure 2.3 shows the evolution of the initial luminosity at the CDF interaction point
over time. It shows that over the course of time the accelerator complex has become
more and more understood which is the reason for the steady rise in luminosity. The
design luminosity of 270 × 1030 cm−2 s−1 was reached in the end of 2006. Figure 2.4
shows the integrated luminosity for the CDF experiment. One has to distinguish
between the delivered luminosity of the Tevatron and the recorded luminosity of the
experiment. The recorded luminosity is always lower, since for technical reasons the
CDF II detector is not recording data at 100% efficiency. The data taking efficiency
is at a value of 80–90 %. Currently (May 2008) 4.0 fb−1 have been delivered, out of
which 3.3 fb−1 have been recorded. The current aim is to deliver 6–7 fb−1 until the
end of 2009.
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Figure 2.3: Initial luminosities over time for all stores in CDF Run II. The spread in
luminosity mainly occurs because of different levels of quality for the antiproton beam,
which is the limiting factor for the luminosity.
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Figure 2.5: Cutaway view of the detector (left). The left figure shows the whole detector.
Labelled are only the muon systems which make up the outermost layers of the detector.
The right figure plot shows a zoomed version and labels the calorimeter and tracking
systems.

2.2 The CDF II Detector

2.2.1 General Overview

The ‘Collider Detector at Fermilab’ (CDF) is an azimuthally and forward-backward
symmetric general-purpose detector [68, 69, 70, 71]. It features a vertexing and
tracking system, particle identification, a superconducting solenoid, calorimetry and
muon chambers. Figures 2.5 and 2.6 show the layout of the detector in a cutaway
view and an elevation view.

In the detector coordinate system cylindrical coordinates are used. The z-axis points
along the proton beam direction (i.e. at CDF in eastward direction). The y-axis
points upwards and the x-axis northwards, radially out of the ring. The azimuthal
angle φ is measured from φ = 0 in the Tevatron plane, the polar angle θ is mea-
sured from the positive z-direction. Instead of the polar angle θ, one often uses the
pseudorapidity η = − ln(tan(θ/2)), because the production of relativistic particles
is uniform over η. The radius r is used to denote the distance from the beam line.

2.2.2 Tracking System

The tracking system is contained in the superconducting solenoid which generates
a 1.4T magnetic field parallel to the beam axis. Precise and efficient reconstruction
of charged particles is an essential part of most analyses studying b- or c-hadrons,
e.g. for good momentum resolution or good signal separation from background. The
tracking system consists of two major systems — the silicon system for precise spatial
information near the interaction point and the drift chamber for good momentum
resolution.
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2

5

Figure 2.6: Elevation view of the CDF II detector.
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Figure 2.7: Schematic layer view of the silicon tracking system.

Silicon Detector

The most important part of the silicon detector is the ‘Silicon Vertex Detector’
(SVX II) [72], which delivers most of the silicon tracking information. Its main
purpose is high-precision tracking which allows precise reconstruction of secondary
vertices. The SVX II has five radially separated readout layers (numbered from 0
to 4), with Layer 0 at r = 2.5 cm and Layer 4 at r = 10.7 cm. The SVX covers the
z-range from z = −43.5 cm to z = +43.5 cm, which corresponds to an η-coverage
of |η| < 2.0. All layers are double-sided, one side performing a measurement in
the r − φ plane, while the other side gives information about the z-position. For
the z-position measurement two different models are used. Layers 0, 1 and 3 use a
90◦ angle (Z90) with respect to the beam axis (‘stereo angle’) to obtain a precise
measurement. In contrast, Layers 2 and 4 use a small 1.2◦ stereo angle (SAS) for
the measurement to reduce hit combination ambiguities.

The innermost layer of the silicon system is called ‘Layer 00’ (L00) [73]. L00 adds
one layer of single-sided r − φ measurements close to the beam pipe. The main
purpose is the improvement of track measurements, but it also additionally serves
as ‘radiation shield’ for the innermost SVX layer, since the silicon used for L00 is
more radiation hard than that for the SVX. In order to avoid gaps in φ, the single
silicon detector parts are arranged in two alternating layers, at radii r = 1.35 cm
and r = 1.62 cm.

The outermost part of the silicon detector are the ‘Intermediate Silicon Layers’
(ISL) [74]. Their main purpose is to enhance linking of tracks between the SVX
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Figure 2.8: The CDF tracking system.

and the drift chamber. They also allow to perform tracking based only on silicon
information, when no drift chamber information is available. The ISL adds one extra
double-sided layer at r ≈ 25cm, which is divided into five overlapping ‘barrels’. The
central layer at radius 22 cm covers the η range from -1 to +1, while the two forward
and the two backward layers with |η| > 1 are located at radii of r = 20 cm and
r = 28 cm. A schematic representation of the silicon layers can be seen in figure 2.7.

Drift Chamber

The drift chamber, called the ‘Central Outer Tracker’ (COT) [75], is one of the most
important detector parts for this thesis. It provides a general-purpose tracking for
charged particles in the central region of the detector and, because of its large track-
ing volume, provides precise momentum measurement. The COT is a cylindrical
drift chamber with an active volume from r = 43.4cm to r = 132.3cm with a length
of l = 3.1 m, covering the central part of |η| < 1. The location of the COT is shown
in figure 2.8.

The drift chamber is filled with a 50:50 mixture of argon and ethane. 2530 cells are
used in the COT, where each cell is a set of sense wires, collecting the information,
and potential wires, shaping the electrical field. The anode cells are separated by
field panels, serving as the cathode. Because of the magnetic field the negatively
charged electrons do not drift along the electrical field direction. To account for
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Figure 2.9: The COT cell layout. One can see the eight superlayers, each with alternating
order of field slots and sense slots, which are rotated by the Lorentz angle.

this, the cells are rotated by an angle (‘Lorentz angle’), which for the COT at CDF
is 35◦. The cells are divided into eight layers (‘Superlayers’), out of which four are
oriented parallel to the beam, responsible for measurements in the r−φ plane (‘axial
layers’). The other four layers have a small stereo angle of 2◦, giving information
about the z-coordinate (‘stereo layers’). Figure 2.9 shows the cell layout of a part
of the COT.

The spatial resolution of the COT is of course much worse than that of the silicon
detector. Because of the large volume, the large number of hits, and a low track
density, it provides a very good momentum resolution of

σ(pT )

pT
= 0.15% × pT

1

GeV/c
.

2.2.3 Muon Detection System

Muon identification heavily relies on the fact, that muons are minimal ionizing
particles and have the highest probability of all long-lived particles to traverse the
detector without being absorbed. The muon detector itself is a system of scintillators
and proportional chambers, which measure charged particles in general. In order
to detect nearly only muons, there needs to be sufficient shielding in place, so that
other long-lived particles like pions, kaons, and electrons get absorbed before they
reach the muon detectors. This is achieved by placing the muon detectors at the
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outermost radius of the detector, so that the other detector parts, especially the
massive hadronic calorimeter, act as shielding. Hadrons still are responsible for
the major part of misidentifications, either because they ‘survive’ until detection or
because they decay into real muons which are not of interest for the studied process.

Muons are not fully reconstructed in the muon chambers. They only leave small
track segments (‘muon stubs’) in the muon system, which need to be matched to
tracks from the COT.

The muon system is comprised out of several subdetectors (also see figure 2.5). The
‘Central Muon Detector’ (CMU) [76] is a wire chamber and covers the central part
of the detector with |η| < 0.6. The CMU does not possess full coverage in the η− φ
plane. It has gaps in φ, since the sensitive part of the wedges only cover 12.6◦ out
of 15◦. More notably is the gap of d = 18 cm between the west and east half, which
leads to a characteristic drop in acceptance for η = 0.

The ‘Central Muon Upgrade’ (CMP) has the same η − φ coverage as the CMU.
The CMP consists of four layers of single-wire drift chambers. Since the drift time
can be much larger than the time between two interactions, the CMP in addition
utilizes a set of scintillators (‘Central Scintillator Upgrade’, CSP/CSW) to provide
timing information. Because of the different geometry — a shape like a rectangular
box, compared to the cylindrical design of the CMU — the CMP can partly cover
for the gaps of the CMU in φ and z. The main purpose of the CMP however is the
confirmation of muons in the CMU. Because the CMP is even further away from the
interaction point and has an additional steel absorber shielding, the rate of charged
hadrons which are mistaken as muons is much smaller than for the CMU. Together,
the central muon system thus provides very clean muon selection.

The main purpose of the ‘Central Muon Extension’ (CMX) is to extend the coverage
in |η| from |η| < 0.6 to |η| < 1.0. It is composed of several structures. For Run I, only
the easily accessible part in φ between collision hall floor and ceiling was covered.
The bottom part had a gap of 90◦, while the top part was missing 30◦. Run II
added structures for the remaining gaps, the so-called ‘Keystone’ for the western
upper part1 and the ‘Miniskirt’ for the bottom part, leading to almost full coverage
in φ (see figure 2.10). The CMX uses the same drift chambers as the CMP, thus also
requiring scintillators (‘Central Scintillator Extension/CMX Miniskirt Scintillators’
CSX/MSX) for timing information.

The ‘Barrel Muon Chambers’ (BMU) extend the coverage up to |η| < 1.5. The BMU
drift chambers (of the same type as the CMP and CMX) are installed on top of the
steel toroids at both ends of the CDF detector. Together with the scintillator systems
named ‘Barrel Scintillator Upgrade/Toroid Scintillator Upgrade’ (BSU/TSU), the
muon systems of BMU, BSU, and TSU make up the ‘Intermediate Muon System’
(IMU).

Table 2.1 summarizes the most important aspects of the different muon systems.

1The corresponding section on the east side remains uninstrumented because this region is
occupied by solenoid cryogenics.
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Figure 2.10: The η − φ-coverage of the CDF muon systems for Run I (left) and Run II
(right). In Run II the central part of |η| < 1.0 is completely covered, with a small exception
on the eastern upper part.

CMU CMP CMX BMU

pseudorapidity coverage |η| < 0.6 |η| < 0.6 0.6 < |η| < 1.0 1.0 < |η| < 1.5
minimum pT [GeV/c] 1.4 2.0 – 2.2 1.4 – 1.8 2.1
maximum drift time [ns] 800 1400 1400 800

Table 2.1: Technical specifications of the CDF muon systems.

2.2.4 Other Detector Systems

The previous section described the detector components most central to this thesis.
Since the CDF detector is a general purpose detector, there are further detector
components, not used in this thesis, that are concisely described here.

Time of Flight System

The ‘Time of Flight’ system (TOF) [77] is located between the drift chamber and
the solenoid. It consists of 216 scintillator bars, covering |η| < 1. It measures the
time between the collision and an obtained signal, which can be combined with the
momentum from the COT and the path length to obtain the particle mass, thus
identifying the particle. The time resolution of the TOF is ≈ 100 ps, allowing most
importantly separation of kaons from pions at low momenta (smaller ≈ 2 GeV/c).
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detector η range resolution thickness

CEM |η| < 1.1 1.5% ⊕ 13.5% × f(E, θ) 18X0

PEM 1.1 < |η| < 3.64 1% ⊕ 16% × f(E, θ) 23.2X0

CHA |η| < 0.9 3% ⊕ 50% × f(E, θ) 4.7 λ0

WHA 0.9 < |η| < 1.3 4% ⊕ 75% × f(E, θ) 4.7 λ0

PHA 1.3 < |η| < 3.64 5% ⊕ 80% × f(E, θ) 7 λ0

Table 2.2: Technical specifications of the CDF calorimeter systems. f(E, θ) is the func-

tion f(E, θ) = 1/
√
E[GeV] sin θ, which results in good resolutions for central and high-

energetic particles. The more forward/backward or low energetic the particles are, the
worse is the resolution. The depth is given in radiation lengths X0 and hadronic interac-
tion lengths λ0 [81].

Calorimetry

The calorimetry system of CDF [78, 79, 80] is divided into two major systems:
the electromagnetic and the hadronic calorimeter systems, designed to absorb elec-
trons/photons and hadrons, respectively.

Both calorimeter systems are located outside the solenoid. The electromagnetic
calorimeter is composed of the ‘Central Electromagnetic Calorimeter’ (CEM) and
the ‘Plug Electromagnetic Calorimeter’ (PEM). Both are supplemented with shower
detectors (‘Central/Plug Electromagnetic ShowerMax’ chamber, CES/PES) to mea-
sure the location of the shower. In conjunction with the tracking information of
the COT, this can be used to separate neutral pions from photons. The hadronic
calorimeter consists of the ‘Central Hadron Calorimeter’ (CHA), the ‘Wall Hadron
Calorimeter’ (WHA), and the ‘Plug Hadron Calorimeter’ (PHA),

All calorimeter systems are sampling calorimeters, meaning that they have alter-
nating layers of active scintillator and absorber material. Table 2.2 lists the basic
properties of the different calorimeter systems.

Luminosity Counters

The determination of the instantaneous luminosity is provided by a system of
Cherenkov counters, the ‘Cherenkov Luminosity Counters’ (CLC) [82]. The CLC is
located near the beam line next to the plug calorimeter. It uses inclusive elastic pp̄
events for measurement. There are two ways to determine the luminosity.

One measurement uses the information, at which ratio the detector did not measure
enough Cherenkov light signal, i.e. at which ratio a so-called ‘empty bunch-crossing’,
a bunch-crossing without interaction took place. From the Poisson probability to
get 0 interactions, p = exp(−µ), this rate can be used to calculate the average rate
of interactions per bunch crossing µ. The luminosity then readily computes as

L =
µ f

σpp̄
,
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Figure 2.11: Schematics for the CDF II trigger system. The left figure shows the overall
layout, while the right figure shows the information flow between the different trigger
decision components.

where f is the Tevatron bunch crossing rate and σpp̄ is the pp̄ cross-section. Another
method simply relates the measured number Nmeas of actual hits in the CLC to the
number that are expected for one interaction Nexp. The expected number is known
from low luminosity measurements. µ then simply is Nmeas/Nexp. The accuracy of
the luminosity measurement is about 5%.

2.2.5 Trigger System

The trigger system at CDF plays a crucial role. Because of the large interaction rate
the CDF detector measures more information than can be processed and stored.
With approximately one interaction per bunch crossing and a rate of one crossing
per 396ns, roughly 2.5 million events take place every second. With a rough estimate
of ≈ 100 kByte per detector event, this would equal a data rate of 250 GByte per
second. Although one might be able to store and process this amount of data with
a huge effort, it is in no way desirable to read out every event — for the simple fact
that most events do not contain any processes one is interested in. As a consequence
a system is required that intelligently selects the few interesting events from the vast
number of events produced in every second. This is achieved by a three-level trigger
system, that decides during operations which events are recorded for further analysis.
Figure 2.11 shows an schematic view of the CDF II trigger data flow.

The first step is the Level-1 trigger. It processes each detector event and has to
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perform decisions at a very fast rate. On average one out of 100 events is accepted,
resulting in a Level-1 acceptance rate of ≈ 25 kHz. The accepted events are passed
to Level-2, which has a buffer that can store 4 events. If the Level-2 trigger accepts
the event, which is about one out of 50, the whole detector information is read out
and passed to the Level-3 trigger. The input rate for the Level-3 trigger is now of
the order of 500 Hz. Level-3 collects all data fragments from the different detector
parts and forms one single event with the so-called ‘event builder’. If Level-3 accepts
the event, which happens for about one out of five, it gets written on a mass storage
device. The final rate is of the order of 100 Hz.

Since the trigger has to make its decisions very fast on Level-1 and Level-2, no
full reconstruction of the whole detector event is possible, and the trigger has to
rely on certain, quickly available quantities. For Level-1, three main classes are
considered: muon information, calorimeter information and tracking information
from the ‘extremely fast tracker’ (XFT) [83], which uses COT information to get
a rough information about the track parameters. The ‘extrapolator unit’ (XTRP)
might give additional information by matching XFT tracks to muon or calorimeter
information. At Level-2, more time is available to process the event. Because of this
more information can be processed, most importantly information from the silicon
detector to identify events with a displaced secondary vertex. There is also enough
time available to calculate more complex quantities, which can be used to classify
the event. Level-3 finally is implemented as software on dedicated computers. The
event is fully reconstructed, allowing for precise information that can be used for
classification. Because of the implementation in software, even complex decision
processes can be realized.



Chapter 3

Determination of the Quantum
Numbers JPC

The determination of the quantum numbers JPC is of crucial importance for the
understanding of the X(3872). For a conventional charmonium hypothesis, the
quantum numbers would almost unambiguously determine which spectroscopic state
needs to be assigned to the X(3872). In case of the determination of ‘unnatural’
quantum numbers, i.e. quantum numbers that cannot be obtained within a quark
model spectrum, the charmonium hypothesis could even be immediately rejected.
Exotic hypotheses also give predictions for the quantum numbers. JPC = 1++ is the
ground state prediction for a DD̄0∗ bound state and the glueball hypothesis implies
JPC = 1−−.

In order to determine the quantum numbers of the X(3872), angular correlations
between the decay products in the decay X(3872) → J/ψπ+π− are studied and
compared to expectations for different JPC hypotheses. These hypotheses are ob-
tained by reweighting a generic three-body phase-space simulation with JPC-specific
decay weights. The ψ(2S) with known quantum numbers, decaying into the same
final state as the X(3872) with high available statistics, serves as a reference for the
validation of the analysis.

This chapter is organized as follows: section 3.1 describes the decay topology and the
construction of the decay weights. Section 3.2 details the selection procedure of the
measured X(3872) candidate sample, while section 3.3 describes the generation of
the simulated samples. The actual measurement and the comparison to expectations
is described in section 3.4. Systematic uncertainties are discussed in section 3.5.

3.1 Decay Topology and Amplitude Construction

At CDF the X(3872) is observed in the three-body decay channel

X(3872) → J/ψπ+π−,
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Figure 3.1: Decay Topology of the X(3872). The decay proceeds in three sequential
two-body decays.

where the J/ψ is reconstructed in its decay to two muons. The decay is modelled as
a sequence of two-body decays, where the two charged pions in the final state decay
via an intermediate dipion resonance R(ππ):

X(3872) → J/ψR(ππ),

J/ψ → µ+µ−,

R(ππ) → π+π−.

This is schematically shown in figure 3.1.

Decay amplitudes in the X(3872) decay are constructed using the helicity formalism,
which allows a straightforward treatment of sequential two-body decays. This thesis
uses conventions employed by Richman [84]. Figure 3.1 illustrates the necessary
components of the complete decay matrix element. It consists of

• a vertex decay matrix element describing the decay X(3872) → J/ψR(ππ),

• a vertex decay matrix element describing the decay J/ψ → µ+µ−,

• a vertex decay matrix element describing the decay R(ππ) → π+π−,

• a propagator term describing the time evolution of the intermediate J/ψ,

• a propagator term describing the time evolution of the intermediate R(ππ)-
system.

In the helicity formalism the angles describing the decay direction are defined in
the helicity frame, i.e. in the rest frame of a decaying particle (center-of-momentum
system ‘cms’). The definition of the decay angles in the sequential two-body decay
chain of the X(3872) is illustrated in figure 3.2. The polar angles θ are defined as
the angle between the mother particle direction and the momentum of one of the
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Figure 3.2: Definition of the angles, used to describe the particle momenta in the decay
chain. ∆Φ is the angle between the π+π− and µ+µ− decay planes.

decay X → J/ψR(ππ) J/ψ → µ+µ− R(ππ) → π+π−

angles θX , φX θJ/ψ, φJ/ψ θππ, φππ

mother momentum
~pX ~pJ/ψ ~pππ

in X(3872) cms in X(3872) cms

daughter momentum
~pJ/ψ in ~pµ+ in J/ψ cms ~pπ+ in R(ππ) cms

X(3872) cms in X(3872) cms in X(3872) cms

reference vector beam axis ~pX ~pX

Table 3.1: Momenta and vectors, used for angle calculation. θ is the angle between mother
momentum and daughter momentum. φ is the angle between two planes, one spanned by
the daughter momentum and the mother momentum and the other spanned by the mother
momentum and the reference vector.

daughter particles in the mother rest frame. Since in the mother rest frame both
daughter particles are ‘back-to-back’, it does not matter which particle is chosen,
but this arbitrary selection needs to be applied consistently. The definition of an
azimuthal angle φ needs an additional independent reference vector in order to
define a proper φ = 0 reference. Used is either the proton beam axis or the X(3872)
momentum, depending on the decay. The momenta used for the angle calculations
are listed in table 3.1.

It is of primary importance for the analysis to know about the variables which are
sensitive to the quantum numbers JPC of the X(3872). The differential X(3872)
cross section is given by

d11σ/(dω11) = dσ/(dm2
X J/ψπ+π− invariant mass

dp2
T dη dφ X(3872) production in laboratory frame

dm2
ππ d cos θX dφX X(3872) decay into J/ψR(ππ)

d cos θJ/ψ dφJ/ψ J/ψ decay into µ+µ−

d cos θππ dφππ) R(ππ) decay into π+π−

where p2
T , η and φ describe the X(3872) in the lab frame. The X(3872) decay into

J/ψ and R(ππ) is described by the decay angles cos(θX) and φX . The subsequent
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decay of the J/ψ is determined by the angles cos θJ/ψ and φJ/ψ, and that of the
R(ππ)-system by cos θππ and φππ.

At the Tevatron, the momentum distribution of the X(3872) is independent of its
quantum numbers, since the state is produced in the fragmentation of the collision
products. Information about the quantum numbers JPC is however contained in the
mass distribution mππ of the dipion resonance, since the X(3872) quantum numbers
affect both the resonance nature of the intermediate dipion resonance and the mass
dependence of the decay.

From the rotational symmetry of the system it can be deduced that for unpolarized
X(3872) production only the following angles depend on the quantum numbers JPC

of the X(3872):

• cos θJ/ψ,

• cos θππ,

• ∆φ = 2π − φJ/ψ − φππ.

All φ angles on their own merely add an insignificant phase. The decay planes of
the dipion and dimuon system can however depend on each other, so that the com-
bination of φJ/ψ and φππ is important. The angle cos θX only contains information
if the X(3872) is polarized.

3.1.1 Conservation Rules in the X(3872) Decay

Any single two-body decay of a mother particle I into its daughter particles F1 and
F2 can be schematically written as:

I → F1F2

JPICII → JP1C1
1 JP2C2

2 .

The first conserved quantity is the total angular momentum J . The total final-state
angular momentum JF is determined by combining the spins J1 and J2 of the final-
state particles to a common spin SF , which in turn is combined with the relative
angular momentum LF between the two final state particles to the total final-state
angular momentum JF :

SF = J1 ⊕ J2,

JF = LF ⊕ SF .

The X(3872) decay and each of its sub-decays are electromagnetic or strong de-
cays. Because of this, C-parity and parity are conserved quantities as well. The
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conservation rules are:

JI = JF ,

PI = PF =P1 P2 × (−1)LF ,

CI = CF .

In order to determine the final state C-parity CF the nature of the daughter particles
needs to be considered. CF is given by:

• CF = C1 C2 for a system of neutral daughter particles,

• CF = (−1)LF+SF for a neutral system of two charged fermions,

• CF = (−1)LF+SF for a neutral system of two charged bosons.

A note on nomenclature: In this chapter, the particle names of the X(3872), the
J/ψ, and the R(ππ)-system will often be used as an index (X, J/ψ, ππ). They can
occur in two ways. On the one hand the index is used to indicate a property, like in
Jππ as the angular momentum of the R(ππ)-system. On the other hand it is used
to indicate the connection of a property to a certain decay and the index denotes
the mother particle in this decay. Lππ thus does not refer to the relative angular
momentum of the R(ππ)-system (which also would not make any sense), but to the
relative angular momentum of the decay products in the decay of the R(ππ)-system.
As a guideline, all quantities necessarily involving more than one particle to give a
proper meaning denote the decay.

The quantum numbers of most of the involved particles are known. For the J/ψ they
are JPC = 1−−, the charged pions have JP = 0−, and the muons have J = 1/2. Since
pions are charged they are not eigenstates of the charge parity operation C. Muons
are point-like particles and are defined with positive intrinsic parity for particles and
negative intrinsic parity for antiparticles. The quantum numbers JPC of the dipion
system can be constrained. Since the allowed dipion mass range is limited to the
low mass range of

2mπ < mππ < mX(3872) −mJ/ψ,

280 MeV/c2 < mππ < 775 MeV/c2,

only low spin systems for the dipion system are assumed to be dominant. A relative
angular momentum between the two pions Lππ = 0 results in a 0++-dipion system,
while Lππ = 1 equals to JPC = 1−−, as will be explained in the next section. Higher
angular momenta are improbable, since the lowest dipion resonance with Lππ = 2
is the f2(1270), whose mass is greater than the allowed dipion mass in the X(3872)
decay by 500 MeV/c2.

The selection rules become important at several places. In the decay R(ππ) → π+π−

the value of Sππ always is 0, because the two pions have spin 0. This in turn leads
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JPCX JPCJ/ψ JPCππ S parity-allowed LS

0++ 1−− 1−− 0,1,2 00, 22
0+− 1−− 0++ 1 11
0−+ 1−− 1−− 0,1,2 11
0−− 1−− 0++ 1 none → forbidden
1++ 1−− 1−− 0,1,2 01, 21, 22
1+− 1−− 0++ 1 11
1−+ 1−− 1−− 0,1,2 10, 11, 12, 32
1−− 1−− 0++ 1 01, 21
2++ 1−− 1−− 0,1,2 02, 21, 22, 23, 42
2+− 1−− 0++ 1 11, 31
2−+ 1−− 1−− 0,1,2 11, 12, 31, 32
2−− 1−− 0++ 1 21
3+− 1−− 0++ 1 31
3−− 1−− 0++ 1 21, 41

Table 3.2: Parity-allowed LS combinations in the X(3872) → J/ψR(ππ) decay. Listed are
all tested JPC hypotheses, the daughter quantum numbers, and their allowed combinations
of combined spin SX and relative angular momentum LX .

to Jππ = Lππ. The quantum numbers of a state, decaying into two charged pions,
are thus completely determined by their relative angular momentum:

Jππ = Lππ,

Pππ = (−1)Lππ ,

Cππ = (+1) × (−1)Lππ .

Several constraints are obtained for the decay X(3872) → J/ψR(ππ). Because of
conservation of C-parity and the negative C-parity of the J/ψ, a C-odd X(3872)
always decays into a C-even dipion state and vice versa. Since only dipion states with
spin Jππ = 0 and Jππ = 1 are considered, the C-parity of the X(3872) effectively
determines the spin of the dipion system. This selective effect is the only, but
very important, consequence of the C-parity of the X(3872) for the studied decay
X(3872) → J/ψπ+π−.

It is important to determine the allowed combinations of combined spin SX and
relative angular momentum LX in the X(3872) decay. While the possible combi-
nations are given by angular momentum conservation, the additional conservation
of parity reduces the allowed combinations to combinations with either odd or even
relative angular momentum LX . Table 3.2 lists the allowed possibilities in the decay
X(3872) → J/ψR(ππ) for each considered quantum number hypothesis.
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Figure 3.3: Illustration of the decay topology, with the mother particle decaying into final
state particles F1 and F2 with helicities λ1 and λ2.

3.1.2 Construction of a Vertex Decay Matrix Element

The decay matrix element of a single vertex is determined both by the momenta
of the incoming and outgoing particles and by the involved spins. Since the matrix
element is constructed in the helicity formalism, the decay is examined in the mother
particle rest frame.

In the mother particle rest frame the following transition takes place:

I(~p = 0, J, Jz) → F1(~p1 = ~pF , λ1) F2(~p2 = − ~pF , λ2).

This is illustrated in figure 3.3. The mother particle, characterized by its spin J
and spin projection Jz along an arbitrarily selected quantization axis, decays into
two particles F1 and F2 with helicities λ1 and λ2. The helicity is defined as the
projection of the spin eigenstate vector on the momentum axis, i.e. λ = ~s · ~p

|~p|
.

In the center-of-momentum system the two daughter particles decay ‘back-to-back’,
so that ~p1 = −~p2. They move along an axis, rotated by a polar angle θ and an
azimuthal angle φ with respect to the original momentum direction of the mother
particle. The direction of the axis is defined to be given by the momentum of
particle 1. Taking this axis as new spin quantization axis, the total combined angular
momentum projection is simply λ = λ1+(−λ2). λ2 is subtracted because it is defined
with the momentum ~p2, which is anti-parallel to the quantization axis. There is no
orbital angular momentum contribution because, due to ~L = ~r × ~p, any orbital
angular momentum is perpendicular to the quantization axis (given by ~p), so that
the projection on the axis is zero.

The angular dependence of such a single decay vertex is given by the Wigner rotation
functions DJ

Jz ,λ(α, β, γ). They are listed for low spins J in reference [5], higher
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spins can be found in reference [85]. Within the helicity formalism, the angles α,
β, and γ are identified with φ, θ, and −φ. Because of this the Wigner functions
will be denoted throughout the thesis by DJ

Jz,λ
(θ, φ). The Wigner functions give a

quantitative answer to the question ‘Given a state with spin J and spin projection
Jz along a quantization axis, what is the amplitude to find the spin projection λ
with a new quantization axis, turned by (θ, φ)?’ The angular dependence of the
Wigner functions can be separated into two terms

DJ
Jz,λ(θ, φ) = dJJz,λ(θ)e

iφ(Jz−λ),

where the dJJz,λ(θ) functions are the so-called reduced Wigner functions. In the
following the quantization axis of the mother state will be defined by its momentum
as well, so that Jz becomes λI .

The relation above gives the angular dependence of a transition with defined spin
projections. In general, a decay can proceed through different possible spin pro-
jections settings, which are not measured. As a consequence, a sum over all the
possibilities needs to be formed — in a coherent or incoherent way, depending on
the measurability of the spin projection. Each summand gets in addition multiplied
by a rotationally invariant coupling term A(λ1, λ2) which contains the remaining
kinematical dependences. While A does not contain angular dependences, it still
depends on the values of the daughter helicities.

The main task is now to determine the helicity couplings A(λ1, λ2). In general they
cannot be determined without introducing model dependence. In the present case,
however, the helicity couplings mostly can be successfully estimated from general
assumptions. The crucial point is the transformation from the helicity framework
into the LS-framework.

The LS-framework uses the different combinations LS of combined spin S and rela-
tive angular momentum L of the daughter particles to characterize all independent
decay amplitudes. It uses a fixed frame for the quantization axis as compared to
the helicity formalism, where the quantization axis changes between mother system
and daughter system. The number of independent LS-couplings is the same as in
the helicity formalism. The couplings can be related by a coefficient matrix Ĉ:

Ahel = Ĉ BLS,

where Ahel is a vector of the n helicity couplings, BLS is a vector of the n LS-
couplings and Ĉ is an n × n matrix relating the two coupling sets. Each helicity
coupling thus can be written as a linear combination of different LS-couplings:

Ahel(λ1, λ2) =
∑

i

cLSi(λ1, λ2) B(LSi)

The main purpose of this transformation is that in the LS formalism the deter-
mination of dominant and suppressed couplings is dynamically possible. The rule
is simple — low relative angular momenta L require lower energies and are thus
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favored over high L. Since the allowed L-values for a given JPC assignment to the
X(3872) go in steps of 2 because of parity-conservation, amplitudes other than the
lowest ones in L are suppressed by two units of angular momentum. This assump-
tion becomes weaker with increasing available energy. It will be seen later that only
in the X(3872) decay (not in the J/ψ or R(ππ) decay) this assumption is necessary
— there however only a kinetic energy of up to 500 MeV is available1. Selecting the
dominant LS-coupling with lowest L, B(LSmin), reduces the relation for given λ1

and λ2 simply to:

A(λ1, λ2) = cLSmin(λ1, λ2)B(LSmin).

In the following the index min will be omitted. It is implicitly assumed that L refers
to the lowest allowed value. The kinematic dependence of B(LS) is given [86] near
threshold by

B(LS) ∝ k∗L,

where k∗ is the three-momentum magnitude of one of the two daughter particles
in the decay. In the mother rest frame both daughter particles have the same mo-
mentum magnitude, only their directions are opposite. The momentum magnitude
is labelled k∗ = |~p1| = |~p2|. To avoid divergence of the matrix element for higher
momenta, this term gets multiplied by a form factor fL(k∗). The form factor is
constructed to have negligible effect for low momenta and to cancel the L power-
dependence for high momenta. This thesis uses a widely used model by Blatt and
Weisskopf [87]. The form factors for L ≤ 3 are:

fL=0(k
∗) ∝ 1 ,

fL=1(k
∗) ∝

√
r2

1 + (k∗r)2
,

fL=2(k
∗) ∝

√
r4

9 + 3(k∗r)2 + (k∗r)4
,

fL=3(k
∗) ∝

√
r6

225 + 45(k∗r)2 + 6(k∗r)4 + (k∗r)6
.

The form factor has one free parameter, the interaction radius r of the mother
particle. For large values of r the power-dependence quickly gets dampened, while
a very small value only affects very large momenta. We use a common value of
r = 1 fm. The effect of different assignments for the quantum number analysis
is tested in the systematic studies. The momentum dependence thus is given by
k∗LfL(k

∗).

In addition, the coefficients cLS(λ1, λ2) need to be determined. They can most
conveniently be determined for the case when φ = θ = 0. The LS-frame then
coincides with the helicity frame and the quantization axes are the same. The

1In the experimental candidate selection procedure this value is even required to be smaller
than 100 MeV.
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values cLS(λ1, λ2) are obtained [88, 89] by

cLS(λ1, λ2) =

(
J1

λ1

J2

−λ2

∣∣∣∣
S

λ1 − λ2

)
×

(
L

0

S

λ1 − λ2

∣∣∣∣
J

λ1 − λ2

)

as a product of two Clebsch-Gordan coefficients. The first coefficient describes the
coupling of the two daughter particles to the combined spin S, and the second the
combination of L and S to the total angular momentum J . The orbital angular
momentum does not contribute, since in the chosen frame any orbital momentum is
perpendicular to the quantization axis.

In conclusion, a single decay matrix element was constructed. It describes the two-
body decay of a particle with spin J and helicity λI into two daughter particles with
helicities λ1 and λ2 and momentum magnitude k∗ each. Under angular change (θ, φ)
of the quantization axis the matrix element is given by:

M(|J, λI〉 → |L, S, λ1, λ2, k
∗, θ, φ〉) ∝ cLS(λ1, λ2) D

J
λI ,λ1−λ2

(θ, φ) k∗LfL(k
∗).
(3.1)

3.1.3 Construction of the Full Decay Matrix Element

The full decay matrix element consists of the combination of the three two-body
decay vertex elements and the connecting propagators. This is schematically written
as

Mtotal =M(X(3872) → J/ψR(ππ))

× J/ψ-Propagator×M(J/ψ → µ+µ−)

× R(ππ)-Propagator ×M(R(ππ) → π+π−).

To simulate the transition rate T , the matrix element will be used to reweight pure
phase space simulation events according to the golden rule

T (X(3872) → µ+µ−π+π−) =
2π

~
|Mtotal|2PS.

The description of the phase-space PS will be handled by the simulation. In order to
form a weight w from the matrix element, the matrix element needs to be squared
and summed over all possible helicities, since those are not measured. This leads to

w ∝ 1

2J + 1

∑

λX

∑

λµ+

∑

λµ−

∑

λπ+

∑

λπ−

∣∣∣∣∣∣

∑

λJ/ψ

∑

λππ

Mtotal

∣∣∣∣∣∣

2

,

averaging over all initial state helicities λX , incoherently summing over all final
state helicities and coherently summing over all intermediate state helicities. This
looks like a very tedious calculation, however, this general equation is simplified
significantly by exploiting specific properties of the analyzed decay.

It should be noted that the decay weight will be exclusively used to compare shapes.
Any overall normalization from global factorizing constants or coefficients is ne-
glected.
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The Decay X(3872) → J/ψR(ππ)

This decay is the most important decay in the decay chain. No major simplifications
are possible because only the quantum numbers of the J/ψ are known. The matrix
element is

M(X(3872) → J/ψR(ππ)) ∝ cLS(λJ/ψ, λππ) D
JX
λX ,λJ/ψ−λππ

(θX , φX) k∗X
LXfLX (k∗X),

considering the appropriate LS choice from table 3.2 and with kX as the momentum
magnitude of the daughter particles in the X(3872) decay.

It should be noted that in this decay it is not always possible to reduce the number
of independent amplitudes to one. For the assignments JPC = 1−+ and JPC = 2−+

three, respectively two, couplings remain, so that no firm prediction is possible. In
this analysis these states will be treated separately.

It is also of importance that the value of k∗X is completely determined by the masses
involved:

k∗X =
c

2mX

√
m4
X +m4

J/ψ +m4
ππ − 2

(
m2
Xm

2
J/ψ +m2

Xm
2
ππ +m2

J/ψm
2
ππ

)
.

In the X(3872) decay both the mass of the J/ψ and the mass of the X(3872) are
nearly constant. k∗X then only depends on mππ. Any change of the treatment of k∗X
thus directly translates into a change of the mππ distribution.

The Decay R(ππ) → π+π−

This decay leads to considerable simplifications, since the final state pions have
spin 0. This completely removes the sum over the final state helicities of the pions.
Since also the combined pion spin is 0, Lππ must be identical to Jππ. The only helicity
coupling A(λπ+ = 0, λπ− = 0) has the momentum dependence k∗ππ

LππfLππ(k
∗
ππ). The

vertex matrix element is then given by

M(R(ππ) → π+π−) ∝ DJππ
λππ,0

(θππ, φππ) k
∗
ππ
JππfJππ(k

∗
ππ).

Also here the dependence on k∗ππ is really a dependence on mππ. Since the pion
masses are identical and constant, one simply obtains

k∗ππ =
c

2

√
m2
ππ − 4m2

π.

The Decay J/ψ → µ+µ−

Some simplifications are possible in this decay, because all quantum numbers of
the involved particles are fixed. In addition all involved masses are fixed because
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the muons have fixed masses and the J/ψ is an extremely narrow resonance. As a
consequence

k∗J/ψ =
c

2

√
m2
J/ψ − 4m2

µ ≈ 1.54 GeV/c

is constant, so that any momentum dependence can be ignored.

The decay exhibits one specialty: it is dominated by the annihilation of the two
charm quarks of the J/ψ into a virtual photon which splits into two muons. A
photon is however massless and because of that it cannot have helicity 0, i.e. it
is transversely polarized. This is not completely true here, because the photon is
virtual and off-shell and thus also can have a mass, but in the limit where the
decaying particle is much heavier than the muon, the transversality is still a very
good approximation. So from the 2×2 = 4 possible helicity combinations only those
with λµ+ − λµ− = ±1 need to be considered.

For those two terms, the helicity couplings A(+1
2
,−1

2
) and A(−1

2
,+1

2
) occur. It can

be shown [84] that parity relates two couplings A(λ1, λ2) and A(−λ1,−λ2) by the
relation

A(λ1, λ2) = η × A(−λ1,−λ2).

η is the so-called ‘naturality’, defined as

η = P P1 P2 × (−1)J−J1−J2.

P , P1, and P2 are the intrinsic parities of the involved particles.

Since the quantum numbers of the J/ψ are 1−, the combined parity of two muons
is (−1), and the muon spin is 1/2, it follows that the naturality is η = (−1) ×
(−1)×(−1)1−1/2−1/2 = +1. As a consequence only one independent helicity coupling
c(λµ+ , λµ−) remains. It can be treated as an overall constant and can be ignored.

The simplified matrix element thus reads:

M(J/ψ → µ+µ−) ∝ D1

λJ/ψ ,λµ+ − λµ−︸ ︷︷ ︸
=±1

(θJ/ψ, φJ/ψ).

Dipion Mass Ambiguity and Treatment

So far the propagator terms in the complete matrix element were not specified. They
effectively introduce an additional dependence on the J/ψ and the dipion masses.
The J/ψ-propagator was already implicitly used, since the intermediate dimuon
system was always treated as a J/ψ with fixed world average J/ψ mass [5], not
allowing for any mass deviations. This is motivated by the fact, that the decay time
of the J/ψ is so large that the uncertainty in energy spread (Γ = 93.4± 2.1 keV [6])
is very small and can be neglected.

The behavior is different for the dipion system. It can be a ρ meson with quantum
numbers 1−−. The mass behavior of the dipion system is then given by a relativistic
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Breit-Wigner function,

Propagatorρ(mππ) = BWρ(mππ) =
1

m2
ππ −m2

ρ + imρΓρ
.

mρ is the world average ρ mass mρ = 775.8 MeV/c2 [5]. Since the ρ is a broad
resonance, kinematical factors will change over its mass range. This is reflected in
an energy-dependent width [90], modifying the nominal width Γρ,0 = 150.3 MeV [5]
as a function of mππ:

Γρ(mππ) = Γρ,0 ×
(

k∗π+(mππ)

k∗π+(mππ = mρ)

)(2Lππ+1=3)
mρ

mππ

f 2
Lππ=1(k

∗
π+(mππ))

f 2
Lππ=1(k

∗
π+(mππ = mρ))

.

The Blatt-Weisskopf form factors enter with the same interaction radius choice as
in section 3.1.2.

No unambiguous treatment is however possible for the case when the dipion system
has the quantum numbers 0++. There is no single narrow resonance dominating the
dipion system in S-wave — at this point any description leads to a strong model-
dependence in the resulting dipion mass spectrum.

This ambiguity leads to a freedom in the total matrix element and has two conse-
quences. First, mππ cannot be used as a discriminating variable between different
JPC states, since the outcome may strongly depend on the chosen model. Only
angular distributions will thus be used to discriminate between different JPC hy-
potheses. Second, it still needs to be decided which dipion mass model should be
used. Although there is no direct correlation between the angular distributions and
the dipion mass distribution, correlations can be induced by detector acceptance
effects. Assuming a wrong model for the dipion mass shape then could lead to
systematically wrong predictions.

To minimize the danger of systematically changing the predicted angular distribu-
tions, information about known facts of the dipion mass shape is used. A dedicated
analysis of the dipion mass [59] finds good agreement between the measured dipion
mass distribution and the following model:

• propagator for the dipion system: ρ0 with world average width and mass,

• relative angular momentum between R(ππ) ≡ ρ0 and J/ψ: LX = 0,

• relative angular momentum between π+ and π−: Lππ = Jππ = 1.

Those parameters are fixed in the mππ-dependent part of the description of the total
decay matrix element, no matter whether those parameters would be correct for the
JPC hypothesis or not. For example, the hypothesis 1+− which would usually use an
S-wave propagator description, LX = 1, and Lππ = 0, still uses the aforementioned
model in the calculation. The effect of this particular choice of the dipion mass
spectrum will be investigated in the systematic section 3.5 of the analysis.
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The Complete Decay Weight

Considering the simplifications from the separate decay vertices, the final decay
weight is

w(JPC) ∝ 1

2JX + 1

∑

λX

∑

λµ+

∑

λµ−︸ ︷︷ ︸
λµ+−λµ−=±1

∣∣∣∣∣∣

∑

λJ/ψ

∑

λππ

Mtotal

∣∣∣∣∣∣

2

with

Mtotal ∝ cLS(λJ/ψ, λππ) D
JX
λX ,λJ/ψ−λππ

(θX , φX) fLX (k∗X)k∗X
LX

× Propagator(mππ)

×DJππ
λππ,0

(θππ, φππ) fJππ(k
∗
ππ)k

∗
ππ
Jππ

×D1
λJ/ψ ,λµ+−λµ−

(θJ/ψ, φJ/ψ).

Considering the particular choice for all dipion mass dependences, this further sim-
plifies to

Mtotal ∝ cLS(λJ/ψ, λππ) D
JX
λX ,λJ/ψ−λππ

(θX , φX)

× (m2
ππ −m2

ρ + imρΓρ)
−1

×DJππ
λππ,0

(θππ, φππ) f1(k
∗
ππ)k

∗
ππ

1

×D1
λJ/ψ,λµ+−λµ−

(θJ/ψ, φJ/ψ).

The obtained angular distributions for each JPC hypothesis are shown in Appendix A.1.

3.1.4 Matrix Element for the ψ(2S) Decay

The ψ(2S) in its decay mode to J/ψπ+π− will be used throughout the analysis for
testing purposes and to derive information for the generation of the simulation. The
treatment for the ψ(2S) is identical to the X(3872) treatment. A matrix element
for the ψ(2S) decay will be constructed, which will be used to reweight a simulated
phase-space sample in order to simulate ψ(2S) events.

The ψ(2S) serves two purposes. First it serves as a high-statistics sample to adjust
the event simulation, so that the simulated ψ(2S) sample reasonably agrees with the
measured ψ(2S) momentum distributions. For this case a matrix element, known
to describe the ψ(2S) is needed. In this thesis, a matrix element from Novikov and
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Shifman [91] is used, that yielded good agreement with high-statistics measurements
from BES [92]. It is given by:

Mψ(2S) ∝ mππ
2 − κ(∆M)2

(
1 +

2m2
π

mππ
2

)

+
3

2
κ

[
(∆M)2 −mππ

2
](

1 − 4m2
π

m2
ππ

) (
cos2 θππ −

1

3

)
.

∆M is the mass difference between the ψ(2S) and the J/ψ. κ is a free parameter,
determined by BES to be

κ = 0.183 ± 0.002(stat) ± 0.003(syst).

The second purpose is to test the quantum number analysis method with the ψ(2S),
where the hypothesis JPC = 1−− must not be excluded. The matrix elements are
constructed in a nearly identical way as for the X(3872), since the decay topology
is the same.

The only change originates from a different choice of the dipion mass modelling. In
the X(3872) case a model was chosen which is known to describe the mππ distribu-
tion for the X(3872). Similarly, for the ψ(2S) a model is chosen that is known to
describe the ψ(2S). A model, which is known to describe the dipion system in the
decay ψ(2S) → J/ψπ+π− is an ‘Adler-zero’ by Voloshin and Zhakarov [93]. Their
dipion mass prediction is of the form

dσ

dmππ
∝ phase-space × (m2

ππ − λm2
π)

2
,

λ is a free parameter which was precisely measured by BES [92]:

λ = 4.35 ± 0.06 ± 0.17.

In addition, the k∗ dependences are fixed to the correct description for the JPC =
1−− case. This leads to Lψ(2S) = 0 and Lππ = 0.

With the fixed mass dependence, the generic angular matrix element for the ψ(2S)
is then given by:

Mtotal,ψ(2S) ∝ cLS(λJ/ψ, λππ) D
Jψ(2S)

λψ(2S),λJ/ψ−λππ
(θψ(2S), φψ(2S))

× (m2
ππ − 4.35m2

π)

×DJππ
λππ,0

(θππ, φππ)

×D1
λJ/ψ ,λµ+−λµ−

(θJ/ψ, φJ/ψ) .
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Figure 3.4: Different dimuon triggers implemented in the CDF trigger system. This anal-
ysis uses the J/ψ trigger (blue), selecting dimuon pairs in the mass range from 2.5GeV/c2

to 4.0GeV/c2. Although there is still a considerable amount of background, the J/ψ signal
is more prominent by an order of magnitude already at trigger level.

3.2 Data Reconstruction

The quantum number analysis is being performed using all data taken until Septem-
ber 2005. The corresponding CDF dataset names are jpmm0d and jpmm0h, spanning
the run numbers 138425–203799. The amount of measured data corresponds to an
integrated luminosity of L ≈ 780 pb−1. The data was selected by the J/ψ → µ+µ−

trigger, leading to a clean sample of J/ψ candidates that can be combined with
pions to form the X(3872) candidates. Figure 3.4 shows the dimuon candidate mass
distribution from various dimuon triggers.

The X(3872) can also be reconstructed in the exclusive decay channel X(3872) →
e+e−π+π−, with the J/ψ decaying into an electron-positron pair [94]. This decay
occurs with the same rate as the decay into two muons. However, the reconstruc-
tion of the electron-positron mode is much more difficult than the reconstruction
in the muon mode, because in the muon mode one strongly benefits from the dedi-
cated muon trigger system, cleaner muon selection and less bremsstrahlung effects.
Because of this, only muons are used in the J/ψ reconstruction.

The events are reconstructed using CDF software release 6.1.1. In the reconstruc-
tion, X(3872) candidates are obtained in two steps. First two muons are combined
to a J/ψ candidate, which in turn is combined with two pions to an X(3872) can-
didate. For most parts the selection process closely resembles that of the CDF
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X(3872) confirmation analysis [2, 95].

3.2.1 Preselection Cuts

Each track is required to pass the following selection criteria, designed to apply basic
quality requirements and to remove obvious background.

• The tracks were required to have a minimal number of hits in the SVX (r− φ
layer) and the COT. Depending on the tracking algorithm by which the track
was reconstructed, at least 2 SVX hits (for Inside-out, Outside-in and SVX-
stand-alone algorithms) and 10 hits in both the axial and stereo layers of
the COT (for Inside-out, Outside-in and COT-stand-alone algorithms) are
required. As indicated by the names, the different algorithms use different
methods to build the tracks from the detector hits. They either start at the
outer radius of the COT and continue to pick up hits into the SVX (Outside-
in), the other way round (Inside-out), or they rely exclusively on hits from
either COT or SVX.

• Tracks are taken from the central region of the detector, i.e. |η| < 1.

• Tracks interpreted as pion candidates are required to have pT > 0.4 GeV/c,
whereas no pT cut was imposed on muon candidates.

• The reconstructed J/ψ-mass needs to be in the mass range 3.02 GeV/c2 <
mµµ < 3.16 GeV/c2.

J/ψ candidates are obtained by fitting opposite-charge muon candidate tracks to
a common vertex using the CTVMFT fitter [96]. Figure 3.5 shows the J/ψ mass
distribution after basic selection cuts. A very large and clean signal is obtained.

3.2.2 X(3872) Candidate Reconstruction

The J/ψ candidates obtained according to section 3.2.1 are combined with two
pion candidate tracks to form an X(3872) candidate. Because the lifetime of an
intermediate dipion system is very short, its decay length would be very small,
much smaller than the spatial detector resolution. For this reason, no vertex fit
is performed to form a dipion system of the two pions. Instead, the two pions
are directly fitted to a common vertex with the J/ψ candidate in order to form
the X(3872) candidate. To improve the mass and momentum resolution of the
measurement, the J/ψ mass is constrained to the nominal world average J/ψ mass
value in this fit. This is a common procedure for narrow resonances where any mass
deviation stems from detector resolution effects. Using the extra information of the
true J/ψ mass, instead of the measured mass with its inaccuracies, improves the
resolution.
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Figure 3.5: Distribution of the reconstructed dimuon mass. In addition to the preselection
requirements, a transverse momentum of pT (J/ψ) > 4.0 GeV/c and a dimuon vertex fit
quality of χ2 < 15 is required. 7.8 million J/ψ candidates can be seen on a very low
background.

The following selection cuts (in addition to the preselection cuts) are applied in the
sample selection:

• the pion charges must be opposite,

• the transverse momentum pT of each pion must be greater than 0.4 GeV/c,

• the transverse momentum pT of each muon must be greater than 1.5 GeV/c,

• the χ2 of the dimuon vertex is required to be less than 15,

• the χ2 of the J/ψππ vertex fit is required to be less than 25,

• the reconstructed dimuon mass needs to be within a ±60MeV/c2 mass window
with respect to the world average J/ψ mass,

• all X(3872) candidates are required to have masses within 3.65 GeV/c2 ≤
m(J/ψπ+π−) ≤ 4.00 GeV/c2,

• both pions are required to lie in a cone around the X(3872) momentum vector
with ∆R < 0.7,

where ∆R =
√

(∆Φ)2 + (∆η)2. Here ∆Φ is the azimuthal angle and ∆η the pseudo-

rapidity of the pion with respect to the X(3872) candidate momentum vector.
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The pT -requirements are in place to remove badly measured tracks, because due to
detector geometry and magnetic field strength only very few well-measured pions
can reach the COT with pT < 0.4 GeV/c. In the same way only very few well-
measured muons can reach the muon chambers with pT < 1.5 GeV/c. The cuts on
the vertex fit χ2 removes events for which the tracks do not agree to come from
a common point of origin. Since the pions decay in a frame boosted relative to
the detector frame they are distributed in a cone around the flight direction of the
X(3872). Cutting on the cone size ∆R is motivated by the fact that the pions are
mostly distributed very close to the X(3872) in the η−φ plane. The pions are close
because they do not obtain much kinetic energy compared to the momentum of the
X(3872) in the lab frame — the kinetic energy available for the two pions only is
≈ 500 MeV/c2. The mass cut finally is designed to remove mass regions one is not
interested in, for the simple reason of reducing the sample size.

3.2.3 Final Cut Optimization

The final cut optimization is performed data-driven and in a different way than in
the CDF X(3872) confirmation analysis. In the optimization the X(3872) signal
significance is used as the figure of merit. It is defined as S/

√
S +B, with the signal

and background yield S and B determined in a ±1.5σ mass window around the
X(3872) mass. S and B are determined from a fit to the mass spectrum, where the
fit model uses a second order polynomial to describe the background and a simple
Gaussian function to describe the X(3872) signal.

The following quantities are used for the final selection cuts:

• the maximum Q-value of the candidate,

• the minimum transverse momentum pT of the X(3872) candidate pT,X ,

• the minimum transverse momentum pT of the J/ψ candidate pT,J/ψ,

• the maximum number of candidates per detector event passing the preselection
cuts nCand.

The quantity Q = mJ/ψππ − mPDG,J/ψ − mππ corresponds to the available kinetic
energy in the decay. A cut on this variable replaces the cut on the dipion system
mass, which was previously used in the the CDF X(3872) confirmation analysis.
For fixed X(3872) and J/ψ masses the quantities Q and mππ are 100% correlated.
Because of this, the replacement does not affect the signal shape. However, there
is one important difference: a Q-value cut has less serious effects on the shape of
the J/ψπ+π− background spectrum, resulting in an easier treatment to describe the
shape. For soft mππ cuts this effect is small, but cutting hard on mππ translates into
a quite sharp falloff in the J/ψπ+π− mass spectrum, which is avoided by cutting on
Q.
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The cuts on pT remove low-pT background events that originate from random frag-
mentation products. Cutting on the number of candidates increases the a priori sig-
nal probability of a candidate. In each detector event, there is either none or, much
more rarely, one X(3872) candidate event. Cutting on the number of candidates
simply removes events where many of the candidates (namely at least nCand−1) are
known to be background. The most important cut variable is however the Q-value.
This variable separates well between signal and background. In the X(3872) decay
low Q-values are preferred, while the background is distributed quite uniformly.

As a first step in the cut optimization, a large amount of random sets of cuts on the
selected quantities is tested to obtain the behavior of the significance as a function
of the cuts. A range with high significance in each variable is determined.

The determined range is scanned in the following 4-dimensional grid:

• 5.5 GeV/c ≤ pT,X ≤ 9.0 GeV/c in 0.25 GeV/c steps,

• 3.0 GeV/c ≤ pT,J/ψ ≤ 6.0 GeV/c in 0.25 GeV/c steps,

• 0.05 GeV/c2 ≤ Q ≤ 0.13 GeV/c2 in 0.01 GeV/c2 steps,

• 2 ≤ number of Candidates ≤ 15 in steps of 1.

Among the cut sets with highest significance, one point is selected. The following
set of cuts yields a significance of S/

√
S +B = 24.1:

• Q < 0.10 GeV/c2,

• pT,X > 6.0 GeV/c,

• pT,J/ψ > 4.0 GeV/c,

• nCand < 5.

In order to show that this cut choice does not select an uncharacteristically large
fluctuation, figure 3.6 illustrates the smooth behavior of the significance as a function
of the cut values in each quantity.

Figure 3.7 shows the distribution of the invariant J/ψπ+π− mass spectrum after the
final cut selection, both in the complete mass region as well as in a narrower mass
window, focussing on the X(3872). Roughly 2300 X(3872) candidates are observed.

From a fit to the invariant mass spectrum, the values

m(X(3872)) = 3871.7 ± 0.3 MeV/c2,

σ(X(3872)) = 5.0 ± 0.3 MeV/c2

are obtained. The fit function uses a second order polynomial for the background
description and a Gaussian function for the signal.
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Figure 3.6: The signal significance S/
√
S +B of the final selection cut set, while varying

one of the four cuts. Shown are the significances as a function of the cut value, while
keeping the other cut values fixed. The horizontal line illustrates the cut choice.
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Figure 3.7: The J/ψπ+π− mass spectrum with fit to the total spectrum after applying
all selection cuts. While in the upper plot the ψ(2S) at ≈ 3.68 GeV/c2 dominates the
spectrum, the X(3872) also yields a clear peak at ≈ 3.87 GeV/c2. In the bottom plot the
J/ψπ+π− mass spectrum with fit is shown in a mass range without the ψ(2S).
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3.2.4 Measurement of Data Distributions

In this thesis it is of particular interest to measure signal distributions without back-
ground contribution. The measured sample is however dominated by background
events which have distributions different than the signal. A method that can deter-
mine the distributions of signal events only is thus required.

The method chosen in this thesis is often referred to as ‘slicing’ method. This method
requires at least one quantity which allows to draw conclusions on the number of
signal events Si contained in a given sample i. In case of the X(3872), the chosen
quantity is the invariant J/ψπ+π− mass. The signal is clearly separated from the
background events in the form of a narrow peak, which allows to determine the
number of signal events from a fit to the mass spectrum. Figure 3.7 shows an
example of such a fit, yielding 2292 signal events. Any distribution f(x) is obtained
by dividing the quantity of interest x (like pT , η, . . . ) into intervals i. The full data
sample then is divided into subsamples corresponding to the chosen intervals. Fitting
each interval results into a set of signal yields fi, which constitute the distribution.

The method is limited by the available statistics. While it is desirable to have as
many intervals as possible to characterize the properties of the distribution, too
many intervals result in low statistics in each interval and a large uncertainty of the
single fit yields. For this reason it is required to balance the number of intervals
against the yield uncertainties of the single intervals. The method should also be
used with extreme care, if the quantity of interest is correlated to the variable, which
is used to estimate the signal yield. The dipion mass is an example — different dipion
mass intervals also potentially select different intervals of the J/ψπ+π− mass. As
a result the shape of the J/ψπ+π− mass looks potentially different in each interval
and extra care is required to ensure that the fit to extract the signal yield describes
the spectrum well in each interval.

For the determination of the X(3872) yields and their uncertainties, the fit model
uses a second order polynomial to describe the smooth background. A Gaussian
function describes the X(3872) signal peak. Both the central value and the width
of the Gaussian function are fixed to the values of m = 3871.7 MeV/c2 and σ =
5.0 MeV/c2 as determined by a binned maximum likelihood fit to the full sample
(see section 3.2). The mass spectrum is fitted in a window of ±110 MeV/c2 around
the fixed signal mass. The histogram bin width is chosen to be 2.5 MeV/c2, of the
order of half the expected detector resolution. The ψ(2S) is studied similarly. Only
the parameters for the fit are different. The signal description uses two Gaussian
functions with same central value of m = 3686.04 MeV/c2, but different relative
contributions and widths. The narrow part uses a width of σ = 2.752 MeV/c2. The
broad part is broader by a factor of fσ = 2.452 and contributes 35.4% of the signal.
These values have been determined from a fit to the complete sample.
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3.3 Monte Carlo Simulation Sample

The simulation sample is used to predict the distributions for different JPC hypothe-
ses. While the angular distributions and the available phase-space could in principle
be determined analytically, this approach is not practical to model the detector ef-
fects. Because of this, a Monte Carlo approach is chosen. The simulation is custom
implemented for the X(3872) and ψ(2S) decays — no standard simulation package
is used.

The generation can be separated into three phases:

1. Generation of the four-momentum distribution of the decaying X(3872) and
simulation of the decay into the final state according to phase space.

2. Simulation of detector effects. Which events would be detected and which
not?

3. Reweighting of the sample according to JPC hypothesis.

Two samples are created. One describes the X(3872) while the other one describes
the ψ(2S). They only differ in the properties of the decaying particle. The only spe-
cific information about theX(3872) entering in the simulation before the reweighting
is its mass. The simulation itself is largely based on general assumptions. Data-
driven ‘tuning’ is only performed to achieve reasonable agreement in the ψ(2S)
transverse momentum and pseudorapidity distributions.

3.3.1 Event Generation

The first step in the event generation is the generation of the four-momentum of
the decaying particle. The four-momentum can be determined from the quantities
mass m, transverse momentum pT , pseudorapidity η, and azimuthal angle φ. pT , η,
and φ form the three-momentum ~p, which can be combined with m to the energy E.
They are generated as follows:

• Mass m: The ψ(2S) sample uses a central mass value of 3686 MeV/c2. This
value is smeared by a Gaussian distribution with width σ(ψ(2S)) = 2.75MeV/c2

to model effective detector resolution effects. For the X(3872) sample a central
mass of 3871.7 MeV/c2 is used with a width of σ(X(3872)) = 5.0 MeV/c2.

• Transverse momentum pT : For both ψ(2S) andX(3872) samples an acceptance-
corrected measurement of the ψ(2S) pT distribution is used. The non-trivial

shape is modelled by dσ/dpT = p203.9
T /(0.852 GeV2/c2 + pT

2)
105.0

and created
in the pT range from 5.5 GeV/c to 30.0 GeV/c.

• Pseudorapidity η: Detector events are uniformly distributed in η. Together
with the restriction to the central part of the detector this leads to the choice
for the uniform distribution of η between −1.2 and 1.2.
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• Azimuthal angle φ: Because of the symmetry in φ, it is generated uniformly
between 0 and 2π.

The most important assumption in the generation is to assume the same behavior
in pT for the X(3872) and the ψ(2S). This is motivated by the fact that, while
no precise knowledge about the X(3872) exists, it is however known from measure-
ment [3] that production and decay properties of the two particles are similar, so
that assuming the same behavior is the most efficient approach.

For the created four-momentum a three-body phase-space decay is simulated into
J/ψπ+π−. This analysis uses the ROOT class TGenPhaseSpace [97], which randomly
creates final state momenta and calculates a weight which corresponds to the proba-
bility of obtaining this final state event. In order to keep the treatment as simple as
possible, this weight is not kept in the further sample but is rather used to perform
a simple acceptance-rejection step2 .

As a final step the J/ψ decay to µ+µ− is simulated. This two-body decay has a
fixed phase-space weight since all involved masses are completely fixed. Only the
direction of the decay products in the J/ψ rest frame is isotropically generated.

3.3.2 Detector Acceptance

The next step is to model detector effects. Since the final state particles have low
transverse momentum, . 2 GeV/c for pions and . 10 GeV/c for muons, acceptance
will play a major part in the event distributions.

The largest effect on the angular distributions is expected from the pT -cuts on the
final state muons and pions. In order to be reconstructed, every final state parti-
cle needs to pass the corresponding pT requirement. The most important effects,
visualized in figure 3.8, are:

• The distribution of the decay angle cos(θX) becomes asymmetric. If the dipion
system decays backward compared to the original X(3872) direction, the pions
are likely to have low momentum in the lab frame. Because they gain very
little extra kinetic energy in the dipion decay, it is very likely that one of
the pions fails the acceptance threshold. The same situation is true for the
muons. They, however, gain ≈ 1.5 GeV in kinetic energy in the J/ψ decay, so
that muons are more likely to be detected. Since θX is defined with the J/ψ
direction, the decay shows a backward preference.

• The decay angles cos(θX) and cos(θJ/ψ) become strongly correlated. The accep-
tance favored direction of the subsequent J/ψ decay into two muons changes,
depending on the direction of the initial J/ψ direction in the X(3872) decay.

2An acceptance-rejection step accepts or rejects events based on their weights. A random
number is created uniformly between 0 and the largest possible weight. If the random number is
smaller than the weight the event is kept, otherwise it is rejected.
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Figure 3.8: Acceptance effects on the angular distributions. The left plot shows the
induced correlation between cos(θX) and cos(θJ/ψ). In addition, the forward decay sup-
pression of cos(θX) can be observed. The right plot illustrates the acceptance effect on
φJ/ψ . Shown are the two distributions where only one muon needs to pass the pT require-
ment and the one where both need to. While a pT -cut on only one of the muons results
in ‘backward’ dips at either φJ/ψ = 0 or φJ/ψ = π, both cuts together lead to a preference
of ‘orthogonal’ angles φJ/ψ = π/2 or φJ/ψ = 3π/2.

This is also true for cos(θX) and cos(θππ), which become correlated as well.
The correlation is however less strong, since in this case the acceptance is
dominated by the initial direction of X(3872) decay.

• The azimuthal angle φJ/ψ becomes strongly sculpted. For each muon, angles
are favored that minimize the probability to pick up too much momentum
in backward direction. Since the momentum vector ~pX is used to determine
φ = 0, a value of φ = 0 results in the highest possible transverse momentum
for the positively charged muons, while the negatively charged muon has the
lowest possible transverse momentum. The opposite situation is true for φ =
180◦ (compare figure 3.2). Since both muons have to pass the acceptance
requirements, the combination leads to the favored decay angles of φ = 90◦

and φ = 270◦. Exactly the same effect also applies to the angle φππ.

The effects are modelled by a simple detector and trigger model, which takes into
account the different pT thresholds and geometric acceptances. Although it is cer-
tainly not a ‘realistic’ description of the detector because of its simplicity, it turns
out to describe both the ψ(2S) and X(3872) distributions sufficiently well to predict
angular distributions.

The model consists of:

• For each event a position of the primary vertex position along the beamline is
generated from a Gaussian distribution of width σ = 29 cm around the center
of the detector at z = 0 cm. An effective pseudorapidity ηeff is calculated
at the detector positions of the COT (for pions) and the muon chambers (for
muons) to account for this z-shift. ηeff is exclusively used for the fiducial
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acceptance cuts in order to simulate the geometric acceptance in η, and for
the assignment whether a muon would have been detected in the CMU or the
CMX.

• Muons are identified above a pT of 1.5GeV/c in the CMU and above 2.0GeV/c
in the CMX. The CMU effective region is defined by 0.028 ≤ |ηeff| ≤ 0.6
(taking into account the muon chamber gap at z = 0 cm), the CMX by 0.6 ≤
|ηeff| ≤ 1.0. Due to the limited φ-coverage of the CMX in the beginning of
Run II, it is simulated to have an efficiency of 75%.

• The muon trigger simulation demands 2 CMU muons or one CMU and one
CMX muon.

• The decreasing pion reconstruction efficiency towards the reconstruction thresh-
old of pT = 400 MeV/c is derived from a ‘realistic’ CDF detector simulation.
The dependence is modeled by ǫ(pT,π) = 0.8+0.2(pT,π − c1)

2/(c2 + (pT,π − c1)
2),

with c1 = 0.4 GeV/c and c2 = 0.005 GeV2/c2.

• The non-uniformity of the COT-efficiency in φ is modelled after measured data
and applied for each muon or pion track.

3.3.3 Event Reweighting

After applying the selection cuts from section 3.2, a comparison of simulated events
to ψ(2S) data shows slight discrepancies in η and pT that are corrected for by a
final reweighting procedure. The corrections are determined by fitting the ratios of
measured ψ(2S) distribution and predicted distributions. The correction functions
are obtained to be

f(pT,X) = 0.94 + exp0.23−0.34 pT,X [GeV/c],

f(ηX) = 0.91 +
0.44

1 + exp(−11.3|ηX | − 0.52)
.

They are shown in figure 3.9. The correction functions are implemented by an
acceptance/rejection method.

Distributions for specific JPC are easily available with the decay weights from sec-
tion 3.1. For each simulated event i, a weight for each JPC hypothesis wi(J

PC) is
obtained. Any distribution is now simply obtained by filling a corresponding his-
togram with the simulated events, not using the weight 1 for each event, but using
the weight wi(J

PC). This reweighting only affects quantities which directly or in-
directly depend on the quantum numbers of the X(3872). For other quantities the
effect over the integrated sample should vanish.

The obtained angular distributions, used to distinguish between the different JPC

hypotheses, are shown in Appendix A.1 for each JPC hypothesis. Both the effect of
the pure JPC-reweighting, as well as the additional acceptance effects are displayed.



68 Chapter 3. Determination of the Quantum Numbers JPC

(2S)ψpt
6 8 10 12 14 16 18 20 22

co
rr

ec
ti

o
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(2S)ψη
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
rr

ec
ti

o
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.9: Correction functions used to account for discrepancies between ψ(2S) data
and simulation.

3.3.4 Simulation Verification with ψ(2S) Measurements

To verify the simulation procedure, the generated events are compared to the dis-
tributions of the transverse momentum and the pseudorapidity of the involved par-
ticles, as well as to the angular distributions. These checks are made using the
ψ(2S) signal, where statistics is high enough to perform an adequate measurement.
For reweighting the ψ(2S) simulation, the amplitude model of Novikov and Shif-
man (described in section 3.1) is used. Figures 3.10 and 3.11 illustrate the good
agreement between simulation and measurement. Figure 3.12 shows the agreement
for the distributions of the decay angles. It can be seen that the simulated angular
distributions describe the data very well.

Shown as well is the agreement of the transverse momentum and pseudorapidity
distributions for the X(3872) (see figures 3.13 and 3.14). The distributions from the
simulation — not using any weight since the correct weight is not known — agree
reasonably well with the corresponding measured data distributions.
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Figure 3.10: Comparison between the transverse momentum (pT ) distributions from the
simulation (histogram) and from the ψ(2S) measurement (points).
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Figure 3.11: Comparison between the pseudorapidity (η) distributions from the simulation
(histogram) and from the ψ(2S) measurement (points).
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Figure 3.12: Comparison between the angular distributions from the simulation (his-
togram) and from the ψ(2S) measurement (points).
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Figure 3.13: Comparison between the transverse momentum (pT ) distributions from the
simulation (histogram) and from the X(3872) measurement (points).
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Figure 3.14: Comparison between the pseudorapidity (η) distributions from the simulation
(histogram) and from the X(3872) measurement (points).
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3.4 Measurement and Comparison of Angular Dis-

tributions

This section presents the actual determination of the quantum numbers JPC of the
X(3872). Its angular distributions will be measured and compared to predictions
for different JPC . Depending on the quality of the agreement, each considered JPC

state will be either accepted or rejected.

The comparison uses a χ2-approach to quantify the agreement between predictions
and the measurement. Both the distribution of the predictions and the distribution
of the measurement are given by a set of yield values yi corresponding to a set of
angular intervals xi. The χ2 is defined as

χ2 =
∑

i

(ydata,i − yMC,i)
2

σ2
i

, (3.2)

where ydata,i is the measured data yield for the interval i. σi is the corresponding
statistical yield uncertainty. No other uncertainties enter at this point. The sta-
tistical uncertainty of the simulation is negligible since the simulation event count
is much higher than in measured data. The inclusion of systematic uncertainties
at this point is impractical, because it would result into a complicated treatment
of correlated uncertainties between the different angular intervals. Instead it will
be checked that systematic effects do not change the conclusion of the analysis (see
section 3.5).

yMC,i is the predicted yield in interval i. To fix the a priori undefined normalization
of the prediction, the χ2 is minimized with respect to the normalization. This
conservative approach prevents the exclusion of any hypothesis because of a wrongly
chosen normalization. The normalized prediction yield is obtained as

yMC,i = n yMCarb,i

n =
∑

i

ydata,i yMCarb,i

σ2
i

/
∑

i

y2
MCarb,i

σ2
i

,

where yMCarb,i is the arbitrarily normalized simulation yield and n is the normaliza-
tion constant, determined from analytically minimizing equation 3.2.

The number of degrees of freedom is given by the number of intervals. One degree of
freedom is lost because of the normalization minimization, so that for a comparison
of N intervals N −1 degrees of freedom remain. The obtained χ2, together with the
number of degrees of freedom, determine the quality of the agreement between the
model and the measurement. For a correct model, the expectation value of the χ2

equals the number of degrees of freedom. From the χ2 and the number of degrees of
freedom (d.o.f.), one can additionally calculate the χ2-probability P (χ2, d.o.f.). For
a given number of degrees of freedom, it corresponds to the probability that for a
true hypothesis a value of χ2 or larger is found.
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Figure 3.15: Illustration of possible angular correlations. Shown is the distribution of
| cos(θππ)| against | cos(θJ/ψ)| in different intervals of ∆Φ for the hypothesis JPC = 1++.
The correlation between | cos(θππ)| and | cos(θJ/ψ)| changes, illustrating a correlation be-
tween all three angles.

3.4.1 Measurement of Angular Distributions

The discriminating information to distinguish between different JPC-hypotheses is
given by the angular distributions cos(θJ/ψ), cos(θππ), and ∆Φ. Since the distribu-
tions are assumed to be symmetric concerning the exchange of particle and antiparti-
cle (π+ ↔ π−, µ+ ↔ µ−), the statistical power can be increased by investigating the
absolute values of cos(θJ/ψ) and cos(θππ). ∆Φ, as the difference between the dipion
and dimuon decay planes, even shows a two-fold symmetry, so that ||∆Φ − π| − π

2
|

is used. Information is not only contained in the single projections of the angular
distributions, but also in their correlations as illustrated in figure 3.15.

In order to be sensitive to the shape of the angular distributions, as many inter-
vals as possible are desirable. However, since the available statistics is limited for
the X(3872), a high number of intervals results in a large yield uncertainty. So
the number of intervals needs to be balanced against the available statistics. This
issue also impacts the principal choice of the binning dimension: Investigating the
three angular variables separately increases the number of intervals with the same
statistical power by a factor of 3, at the cost of the loss of all possible correlation
information between the angular variables.

The optimal strategy was determined by simulation. The figure of merit in the
optimization is the discrimination power between the two hypotheses JPC = 1++

and JPC = 2++. This choice is motivated by the fact, that a determination of the
X(3872) quantum numbers by Belle remained with the favored hypotheses JPC =
1++ and JPC = 2++ [58], so that a further separation between those two hypotheses
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Figure 3.16: Measurement of the three-dimensional angular distribution.

if of primary experimental interest. The following binning is obtained:

• 3 bins with bin borders (0, 0.63, 1.15, π
2
) for ||∆Φ − π| − π

2
|,

• 2 bins with bin borders (0, 0.6, 1.0) for | cos(θJ/ψ)|,

• 2 bins with bin borders (0, 0.5, 1.0) for | cos(θππ)|.

This choice results in a total number of 12 intervals, which corresponds to 11 degrees
of freedom for the χ2-comparison. A non-equidistant binning yielded slightly better
results than an equidistant binning.

The numerical values of the measured distribution can be found in table 3.3. All
single mass spectrum fits are shown in Appendix A.2. A graphical representation is
given in figure 3.16. To avoid that the different interval volumes affect the graphical
representation of the distribution, the interval yields are rescaled to unit interval
volume.

3.4.2 Comparison of Measured Distributions to Predictions

The measured distribution is compared to the JPC-hypotheses. In this section the
comparison is only performed for hypotheses with known angular distributions. The
hypotheses JPC = 1−+ and JPC = 2−+ which have some remaining ambiguity in
their matrix elements are considered in the next section. The results are shown in
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angular interval relative volume measured yield normalized yield

| cos(θJ/ψ)| < 0.6
1.44 137.1 ± 27.9 94.9 ± 19.3| cos(θππ)| < 0.5

0 < ||∆Φ − π| − π
2
| < 0.63

| cos(θJ/ψ)| < 0.6
1.19 309.9 ± 33.8 260.1 ± 28.4| cos(θππ)| < 0.5

0.63 < ||∆Φ − π| − π
2
| < 1.15

| cos(θJ/ψ)| < 0.6
0.96 306.3 ± 34.8 317.6 ± 36.0| cos(θππ)| < 0.5

1.15 < ||∆Φ − π| − π
2
| < π/2

| cos(θJ/ψ)| < 0.6
1.44 119.8 ± 27.6 83.0 ± 19.1| cos(θππ)| > 0.5

0 < ||∆Φ − π| − π
2
| < 0.63

| cos(θJ/ψ)| < 0.6
1.19 213.5 ± 29.8 179.2 ± 25.0| cos(θππ)| > 0.5

0.63 < ||∆Φ − π| − π
2
| < 1.15

| cos(θJ/ψ)| < 0.6
0.96 188.7 ± 28.8 195.6 ± 29.8| cos(θππ)| > 0.5

1.15 < ||∆Φ − π| − π
2
| < π/2

| cos(θJ/ψ)| > 0.6
0.96 108.8 ± 24.7 113.0 ± 25.6| cos(θππ)| < 0.5

0 < ||∆Φ − π| − π
2
| < 0.63

| cos(θJ/ψ)| > 0.6
0.79 162.4 ± 25.5 204.4 ± 32.1| cos(θππ)| < 0.5

0.63 < ||∆Φ − π| − π
2
| < 1.15

| cos(θJ/ψ)| > 0.6
0.64 136.7 ± 24.2 212.6 ± 37.6| cos(θππ)| < 0.5

1.15 < ||∆Φ − π| − π
2
| < π/2

| cos(θJ/ψ)| > 0.6
0.96 225.6 ± 29.0 234.4 ± 30.1| cos(θππ)| > 0.5

0 < ||∆Φ − π| − π
2
| < 0.63

| cos(θJ/ψ)| > 0.6
0.79 227.9 ± 28.2 286.9 ± 35.5| cos(θππ)| > 0.5

0.63 < ||∆Φ − π| − π
2
| < 1.15

| cos(θJ/ψ)| > 0.6
0.64 155.2 ± 25.7 241.5 ± 39.9| cos(θππ)| > 0.5

1.15 < ||∆Φ − π| − π
2
| < π/2

Table 3.3: Measured X(3872) yield in each angular interval. The first two columns list the
interval boundaries and the relative ratio of the interval volume to a unit interval volume.
The measured yield with corresponding error is listed in the third row. The rescaled yield,
which is simply determined by dividing by the relative volume, is listed in the last column.
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hypothesis χ2 (11 d.o.f.) χ2 probability

1++ 13.23 0.28
1−− 35.13 2.4×10−4

2+− 38.91 5.5×10−5

2−− 39.82 3.8×10−5

1+− 39.82 3.8×10−5

3+− 39.82 3.8×10−5

3−− 41.00 2.4×10−5

2++ 43.02 1.1×10−5

0−+ 103.59 3.5×10−17

0+− 129.21 ≤1×10−20

0++ 163.07 ≤1×10−20

Table 3.4: Results of the three-dimensional angular analysis for the states with known
angular distributions. Listed are the state, the obtained χ2 and the corresponding χ2

probability for 11 degrees of freedom.

table 3.4. Only the hypothesis with JPC = 1++ is able to describe the measured
data. It has an acceptable χ2 of 13.23, which corresponds to a χ2-probability of
P = 27.8%. The hypothesis JPC = 1−− already has a probability of less than 1 in
1000 to observe its χ2 of 35.13. In terms of Gaussian confidence regions, a hypothesis
is excluded at 3 σ confidence level if the χ2 value for 11 degrees of freedom is larger
than 28.5, and excluded at 5 σ confidence level if the χ2 value is larger than 50.2.
All hypotheses except JPC = 1++ are thus excluded at the 3 σ confidence level,
all spin 0 states are excluded by more than 5 σ. It can also be observed that the
hypotheses JPC = 1+−, JPC = 2−−, and JPC = 3+− have the same χ2 values. This
is not accidental, since their angular distributions are identical.

Treatment of the Hypotheses JPC = 1−+ and JPC = 2−+

For the hypotheses JPC = 1−+ and JPC = 2−+ it is not possible to predict the
angular distributions, since at least two coupling terms contribute with unknown
relative strength. In case of the JPC = 1−+ three different couplings remain, while
in case of the JPC = 2−+ there are two (see table 3.2 in section 3.1). In this section
they will be referred to as S-amplitudes.

In order to evaluate the hypotheses JPC = 1−+ and JPC = 2−+ as possible assign-
ments for the X(3872), it is no longer possible to perform a comparison to one single
predicted distribution. A hypothesis can only be rejected if from the multitude of
possible distributions none is able to describe the data.

The matrix element of the two states is formed as the coherent sum of the contribut-
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ing S-amplitudes. Their mixing is described by a set of complex coefficients:

M(1−+) = r0e
iφ0M(1−+

S=0)

+ r1e
iφ1M(1−+

S=1)

+ r2e
iφ2M(1−+

S=2),

M(2−+) = s1e
iγ1M(2−+

S=1)

+ s2e
iγ2M(2−+

S=2)

The indices denote the combined spin of the J/ψ and the (π+π−) system. Since the
overall strength and phase of the coupling are irrelevant, only two relative complex
coefficients remain for the JPC = 1−+ hypothesis. One complex coefficient remains
for the JPC = 2−+ hypothesis.

As a first step the analysis is performed for the single S-amplitudes of the JPC = 1−+

and JPC = 2−+ hypotheses. Measurement compatibility with a single configuration
will already prevent the firm exclusion of the corresponding JPC state, since in this
case already one possibility would have been identified that successfully describes
the measured data. The following results are obtained:

hypothesis χ2 (11 d.o.f.) χ2 probability

1−+
S=0 163.07 ≤1×10−20

1−+
S=1 49.34 8.22×10−7

1−+
S=2 87.51 5.11×10−14

2−+
S=1 13.56 0.26

2−+
S=2 74.39 1.77×10−11

The S = 1 configuration of the JPC = 2−+ hypothesis already shows good agreement
with measured data, whereas no single S-amplitude of the JPC = 1−+ hypothesis
results in an adequate description. As a consequence, JPC = 2−+ already needs to
be included in the list of possible assignments for the X(3872), whereas the situation
is not yet determined for the JPC = 1−+ hypothesis.

The next step in the analysis of the JPC = 1−+ state is a scan of various possibilities
of mixing parameters. As a first set, the scenario is investigated where only two of
the three S-amplitudes contribute. The following values are used in the scan:

1. neglect 1−+
S=2: r2 = 0

r0 = 1, φ0 = 0

r1 =
√

1
100

,
√

1
50

,
√
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√

6,
√
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√
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√
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√
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√
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100
φ1 = 0, π

8
, 2π

8
, 3π

8
, 4π

8
, 5π

8
, 6π

8
, 7π

8
, π

2. neglect 1−+
S=1: r1 = 0

r0 = 1, φ0 = 0
r2 and φ2 analogous to first case
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3. neglect 1−+
S=0: r0 = 0

r1 = 1, φ1 = 0
r2 and φ2 analogous to first case

The second set of scans investigates a 4-dimensional grid, allowing mixing between
all contributing S-amplitudes. The following mixing values are investigated:

• r0 = 1, φ0 = 0:

r1 =
√

1
4
,
√

1
2
, 1,

√
2,

√
4

r2 =
√

1
4
,
√

1
2
, 1,

√
2,

√
4

φ1 = 0, π/2, π, 3π/2
φ2 = 0, π/2, π, 3π/2

The final set uses the best single amplitude with S = 1 as base configuration, and
it is investigated whether small contributions from the two remaining S-amplitudes
lead to improvements. This set employs the values:

• r1 = 1, φ1 = 0:

r0 =
√

1
200

,
√

1
100

,
√

1
50

r1 =
√

1
200

,
√

1
100

,
√

1
50

φ0 = π/4, 2π/4, 3π/4, 4π/4, 5π/4, 6π/4, 7π/4
φ2 = π/4, 2π/4, 3π/4, 4π/4, 5π/4, 6π/4, 7π/4

As a result of all scans it is found that the best combinations have a χ2 of ≈ 47,
which is slightly better than the best single amplitude. Their χ2 probabilities are
however still of the order of 10−5, excluded at almost 5 σ confidence level. The
best value is obtained for the case where small admixtures of the S = 0 and S = 2
amplitudes are added to a dominant S = 1 amplitude.

In addition to selecting the coefficients from a fixed grid, a further determination
approach was performed with a direct fit. This means that the mixing coefficients
were used as free parameters in a fit, which minimizes the χ2 of the resulting JPC =
1−+ state. Since the four-dimensional parameter-space has many local minima due
to the periodic structure of the phases, it is not expected to find a global minimum
with an arbitrary set of starting values. As a consequence, the fit is performed
with multiple different sets of starting values which yielded the best values in the
previously performed scan. As a result of the procedure, the best χ2 value is found
to be χ2 = 45.4, with the following set of parameters: r0 = −0.196, φ0 = 1.92;
r1 = 1.0, φ1 = 0.0, r2 = 0.20, φ2 = 1.9. While it cannot be completely ruled out
that the global minimum is different, it is very improbable that this minimum is
both small enough to be a good candidate and that a true X(3872) with JPC = 1−+

would be realized in such configuration.

From this point on, the JPC = 1−+ configuration with the best obtained χ2 value
will be simply referenced as JPC = 1−+. From the χ2 of 45.4 it is concluded that
the JPC = 1−+ hypothesis is not compatible with data.
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hypothesis χ2 (11 d.o.f.) χ2 probability

1++ 13.23 0.28
2−+ 13.56 0.26
1−− 35.13 2.4×10−4

2+− 38.91 5.49×10−5

2−− 39.82 3.84×10−5

1+− 39.82 3.84×10−5

3+− 39.82 3.84×10−5

3−− 41.00 2.41×10−5

2++ 43.02 1.08×10−5

1−+ 45.40 4.13×10−6

0−+ 103.59 3.46×10−17

0+− 129.21 ≤1×10−20

0++ 163.07 ≤1×10−20

Table 3.5: Results of the three-dimensional angular analysis including all tested hypothe-
ses. Listed are the JPC hypothesis, the obtained χ2 and the corresponding χ2 probability
for 11 degrees of freedom.

Furthermore, a similar scan has been performed for the already accepted JPC =
2−+ state to study the effect of a an admixture of the ‘bad’ S = 2 amplitude to the
S = 1 amplitude. The aim is to investigate whether only the very particular choice
of the S = 1 amplitude is able to describe the data. This would make the JPC = 2−+

hypothesis weaker, since there is a priori no good reason why the JPC = 2−+ state
should in nature be realized as a single amplitude. Performing a similar fit/scan
procedure as for the JPC = 1−+ hypothesis, it is found that even a 1 : 1 mixing
of both amplitudes is able to describe the data on a 1% to 5% level. Hence it can
be concluded that besides a pure S = 1 JPC = 2−+ state also a mixture of both
amplitudes is a valid X(3872) candidate. However, no admixture is found which
would sizably improve the JPC = 2−+ χ2 probability compared to the pure S = 1
amplitude. For this reason JPC = 2−+ will from this point on only be used to
reference to the pure S = 1 amplitude.

As a final result, all considered states are listed together in table 3.5. A graphical
representation of the measured data distribution and the predicted distributions
is shown in figure 3.17. Shown are the measured data points, rescaled to unit
interval volume, and the predicted distributions for various hypotheses: the two best
hypotheses JPC = 1++ and JPC = 2−+, as well as the third best (JPC = 1−−) and
the worst hypothesis (JPC = 0++). A graphical representation for each hypothesis
can be found in Appendix A.3.
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Figure 3.17: Result of the three-dimensional angular correlation analysis. The measured
data points are shown together with the predictions computed for four different hypotheses.

3.5 Systematic Uncertainties

In this section possible sources of uncertainty in the determination of the quantum
number results are investigated. Multiple cross-checks have been performed to check
the stability of the result. Most importantly, each check must not endanger the main
conclusion of the analysis — that only JPC = 1++ and JPC = 2−+ can describe the
measured data.

3.5.1 Determination of the Quantum Numbers JPC of the
ψ(2S)

The most important cross-check is the verification of the method on a known state.
In this case, can the procedure designed to determine the unknown quantum num-
bers of the X(3872) correctly determine the known quantum numbers of the ψ(2S)?
This state is well suited to cross-check the analysis method, since it decays into the
same final state J/ψπ+π−. The analysis is performed similarly. A slight change is
introduced by adjusting the ψ(2S) fit model for each single fit. This will be detailed
in section 3.5.5. All settings that were optimized for the X(3872) analysis like the
binning or the cut selection remain unchanged, in order to keep the measurement
method as close as possible to the method in the X(3872) measurement.

It is not the aim of this cross-check to ‘tune’ the procedure to obtain perfectly
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hypothesis χ2 (11 d.o.f.) χ2 probability

1−−
Novikov 15.07 0.18
1−− 23.50 0.02
2++ 26.33 0.01
2+− 47.35 1.87×10−6

3−− 70.15 1.15×10−10

1++ 399.54 ≤1×10−20

3+− 504.81 ≤1×10−20

2−− 504.81 ≤1×10−20

1+− 504.81 ≤1×10−20

2−+ 505.12 ≤1×10−20

1−+ 516.49 ≤1×10−20

0++ 1500.33 ≤1×10−20

0+− 1847.01 ≤1×10−20

0−+ 3169.17 ≤1×10−20

Table 3.6: Results of the three-dimensional angular analysis for the ψ(2S). Listed are the
JPC hypothesis, the obtained χ2 and the corresponding χ2 probability for 11 degrees of
freedom.

acceptable values, since this would endanger the generalized applicability of the
method to an unknown state. The point of interest is rather, whether the correct
quantum numbers are favored over wrong ones. In addition, the correct quantum
numbers also need to be compatible with the data measurement.

Table 3.6 lists the results of the comparison for the ψ(2S). The true quantum
numbers, JPC = 1−−, are the favored quantum numbers of the ‘generic’ hypotheses.
Only the dedicated ψ(2S) model by Novikov and Shifman, introduced in section 3.1,
naturally obtains a better result. From the remaining JPC hypotheses only JPC =
2++ shows a similar agreement to data, all others have probabilities smaller than
10−5.

The χ2 probability of the generic JPC = 1−− hypothesis is of the order of 1%
— in view of the generality of the underlying model and possible mismodelling
effects in the simulation, this is a very good result. It is illustrated in figure 3.18.
One can nicely see both the good agreement of the ψ(2S) measurement with the
prediction, as well as the closeness of the generic JPC = 1−− hypothesis to the
dedicated model. The figure also impressively demonstrates the sensitivity of the
χ2 to small changes in the predictions at high statistics. With the uncertainties
from the X(3872) measurement there would have barely been a difference in the χ2

values for the best hypotheses. As well shown in the comparison is the JPC = 1++

hypothesis that yielded the best result in the X(3872) comparison. It clearly is not
able to describe the measured data in case of the ψ(2S).
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Figure 3.18: Result of the three-dimensional angular analysis for the ψ(2S). The mea-
sured data points are shown together with the predictions computed for three different
hypotheses.

3.5.2 Selection Effects

The obtained result must not depend on the particular selection of the data sample.
This section checks the stability of the result at different signal selection working
points.

As a first check, four different working points are selected in addition to the ‘default’
analysis working point. These four working points need to have high statistical
significance as well, since otherwise any comparison would be dominated by the
difference in effective statistics. For the resulting five working points, the mean χ2

values and the variation in χ2 is determined.

The following five working points are used:

• Q < 0.10 GeV/c2, pT,X > 6.00 GeV/c, pT,J/ψ > 4.00 GeV/c, nCand < 5
with significance 23.4,

• Q < 0.09 GeV/c2, pT,X > 6.00 GeV/c, pT,J/ψ > 4.25 GeV/c, nCand < 6
with significance 23.3,

• Q < 0.11 GeV/c2, pT,X > 7.00 GeV/c, pT,J/ψ > 4.50 GeV/c, nCand < 5
with significance 23.0,

• Q < 0.10 GeV/c2, pT,X > 6.25 GeV/c, pT,J/ψ > 4.75 GeV/c, nCand < 8
with significance 23.1,



3.5. Systematic Uncertainties 85

hypothesis average χ2 (11 d.o.f.) χ2 probability

1++ 14.94 ± 1.92 0.19
2−+ 15.58 ± 1.85 0.16
1−− 35.20 ± 4.04 2.3×10−4

2−− 35.35 ± 5.69 2.2×10−4

1+− 35.35 ± 5.69 2.2×10−4

3+− 35.35 ± 5.69 2.2×10−4

2+− 39.74 ± 3.98 4.0×10−5

3−− 42.14 ± 3.98 1.5×10−5

2++ 42.59 ± 4.62 1.3×10−5

1−+ 45.18 ± 3.39 4.5×10−6

0−+ 104.86 ± 2.50 1.9×10−17

0+− 133.63 ± 5.61 ≤1×10−20

0++ 155.59 ± 11.26 ≤1×10−20

Table 3.7: Cross-check of the three-dimensional angular analysis for different working
points. Listed are the single JPC hypothesis, the average χ2 with standard deviation, and
the corresponding χ2 probability for 11 degrees of freedom.

• Q < 0.12 GeV/c2, pT,X > 6.25 GeV/c, pT,J/ψ > 4.50 GeV/c, nCand < 6
with significance 22.9.

The χ2 results of the different working points are shown in table 3.7. Besides a
statistical spread no effect is observed.

As a second check, the impact of a different cut selection is studied by individually
varying the cuts on the single cut variables, while the rest of the selection cuts
remains fixed. The final selection variables Q, pT,X , pT,J/ψ and nCand are varied,
as shown in figure 3.19. While the variation of the Q-value shows some structure,
the interpretation concerning the question, which hypotheses are acceptable or not,
stays consistent. The hypotheses JPC = 1++ and JPC = 2−+ always stay below the
value of χ2 = 28.5 (corresponding to 3 σ), while all other hypotheses always stay
above.

3.5.3 X(3872) Polarization Effects

In the construction of the matrix elements the X(3872) was assumed to be unpolar-
ized. This is a reasonable assumption for prompt production, where the X(3872) is
produced as a fragmentation product. This is different from the X(3872) production
in B-decays at Belle and BABAR: In the observed decay mode B+ → K+X(3872),
both the K+ and the B+ have spin 0, only allowing the X(3872) to have spin
projection λX = 0.
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Figure 3.19: χ2 for cut variations of single variables. Shown are the resulting χ2-values
for the JPC hypotheses with χ2 values below 60.

Polarized states are experimentally nice for angular distribution studies, if the po-
larization is known. The reason is that polarized states have a unique spin con-
figuration in the initial state, compared to the unpolarized scenario where all spin
configurations are possible and have to be averaged over. Polarization thus leads to
an additional discriminating variable, in the case of the X(3872) decay this is the
helicity angle θX . In the ‘default’ unpolarized case, the sum over all polarizations
leads to a uniform distribution of this angle, since the sum over a set of squared
Wigner functions equals one:

∑

λX

|dJλX ,λ(θX)|2 = 1,

for any value of λ. In the polarized case, where the sum is either weighted or
incomplete, this is no longer the case, so that a net dependence on θX may result.

Polarization of the X(3872) does mathematically not change the integrated angular
dependence of any angles other than θX . However, as explained in section 3.3,
acceptance effects induces correlations between the remaining helicity angles and
θX . This leads to the fact, that, because of the change of behavior of θX , also other
decay angles might change shape.

Those two facts allow to determine the possibility of changes in the result due to
polarization effects. Any significant change of the analyzed angular distributions



3.5. Systematic Uncertainties 87

JPC unpolarized P 01 P 10

1++ 13.23 X 16.79 X 11.82 X

1−+ 45.40 X 47.36 × 45.26 X

1+− 39.82 X 37.31 × 65.80 ×
1−− 35.13 X 37.36 X 32.03 X

JPC unpolarized P 001 P 010 P 100 P 011 P 110 P 101

2++ 43.02 X 39.06 X 44.18 X 52.27 X 41.04 X 46.66 X 42.30 X

2−+ 13.56 X 11.75 X 14.98 X 15.79 X 12.48 X 16.72 × 12.71 X

2+− 38.91 X 32.36 × 49.78 × 73.73 × 34.29 X 56.93 × 34.07 X

2−− 39.82 X 44.71 × 37.35 × 54.18 × 37.89 × 41.97 × 43.87 ×

JPC unpolarized P 0001 P 0010 P 0100 P 1000 P 0011 P 0101 P 1001

3+− 39.82 X 55.23 × 40.25 X 43.82 × 50.71 × 43.88 × 39.42 × 45.34 ×
3−− 41.00 X 34.61 × 42.63 × 67.58 × 82.19 × 32.48 × 34.90 × 30.79 ×
JPC unpolarized P 0110 P 1010 P 1100 P 0111 P 1011 P 1101 P 1110

3+− 39.82 X 40.52 × 42.20 × 45.93 × 39.42 X 42.10 × 39.62 X 42.14 ×
3−− 41.00 X 52.80 × 51.80 × 72.16 × 37.30 X 34.81 X 40.29 × 57.58 ×

Table 3.8: Effect of polarized X decay on the χ2. The listed polarization cases ‘P’ represent
the spin 0,1,2,3 component set to 0 or to 1. In addition a X indicates, whether the
considered state has an acceptable χ2 in cos(θX) smaller than 20 for 11 degrees of freedom.

for a given state can only enter by acceptance effects via θX . In this case however,
also the shape of cos(θX) would have to be significantly different from the ‘default’
analysis. So by checking the agreement of both cos(θX) and the usual decay angular
distributions, a possible polarization effect can be evaluated.

To quantitatively give results for polarized assumptions, each polarizable state is
assumed in all possible completely polarized conditions. Spin 2 and spin 3 states are
assumed in all ‘binary’ possibilities of their contributing spin projection components.
This notation e.g. denotes (1000) when only amplitudes with λX = 0 contribute,
(0010) for contributions from only λX = ±2, or (0101) for contributions from only
λX = ±1 and λX = ±3. For each polarization assumption a χ2 is calculated for
the three-dimensional angular distributions. In addition, the distribution of cos(θX)
is compared to the measured distribution in 12 equidistant intervals from −1 to
1. In contrast to the so far analyzed decay angles, no symmetry can be exploited.
The angular distribution becomes heavily asymmetric due to acceptance effects, as
explained in section 3.3.

Table 3.8 shows the results of the polarization study. Listed are the obtained χ2

values for different polarizations. In addition a tick mark X indicates, whether the
cos(θX) distribution agrees with data. Good agreement in cos(θX) is defined as
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having a χ2 lower than 20, corresponding to 2σ at 11 degrees of freedom. It can be
deduced from the table that even without the additional requirement of cos(θX) the
result does not change. JPC = 1++ and JPC = 2−+ always remain good candidates,
while all other hypotheses always stay excluded at the 3 σ level. In addition, big
changes in the three-dimensional χ2 to the value from the unpolarized χ2 prediction
are accompanied by a disagreement in cos(θX).

It can be concluded that even strong polarization would not change the result. Fur-
thermore, any polarization leading to a potential big change in the three-dimensional
χ2 is disfavored by the resulting disagreement with the measured cos(θX) distribu-
tion.

3.5.4 Further Cross-Checks

This section contains a variety of further cross-checks. A description and numbering
of the different tests is followed by an overview table of the results.

In order to check for the correctness of the simple simulation of the J/ψ trigger,
two checks are performed. If not successful, it would indicate that a more detailed
simulation of the muon chambers and the triggers is needed. In the first check
(‘Check 1’) only those J/ψ are used, where both muons were detected in the central
muon chambers CMU and CMP. This excludes the candidates, where one of the
muons was detected by the CMX muon system. The CMX is excluded by requiring
a pseudorapidity of |η| smaller than 0.6. The J/ψ trigger incorporates various possi-
bilities to trigger a J/ψ, so-called ‘trigger paths’, which have different requirements
for the properties of a dimuon system. Those paths have different pT -thresholds for
the muons, with the most important ‘step’ at 2.0 GeV/c. In order to test a pos-
sible mismodelling of the simulation, all events with muon transverse momentum
pT < 2.0 GeV/c are rejected (‘Check 2’).

In ‘Check 3’ and ‘Check 4’ the consistency between the data taken before and after
the Tevatron shutdown in August 2004 (datasets jpmm0d and jpmm0h) is investigated.
The experimental apparatus does not perform identically over time, but changes its
performance with e.g. trigger changes, luminosity improvements, or detector aging.
It may therefore be possible, that some aspects of the simulation, which were valid
for a certain point in time, are not valid anymore later. Since the two datasets are
approximately the same in size, each check only has half the statistical power.

At the Tevatron theX(3872) is predominantly produced as a fragmentation product.
A small fraction however also originates from B decays. An effect on the analysis is
investigated by further suppressing the amount of candidates from B decays. This
is achieved by cutting on low values of the variable ct, since B mesons have a long
average lifetime. Checks number 5 and 6 require ct to be less than 250 µm and less
than 100 µm, respectively.

Finally, ‘Check 7’ represents an alternative to the non-equidistant three-dimensional
binning by simply using equidistant intervals in the three-dimensional angular space.
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The results of the checks 1–7 are listed in table 3.9. It can be seen that in nearly
all cases the excluded assignments become better, simply because most checks sig-
nificantly reduce the statistical power of the test. The general behavior is however
identical in each check — JPC = 1++ and JPC = 2−+ always are the best hypothe-
ses, better by at least an order of magnitude in probability. All cross-checks thus
are successful.

3.5.5 Measurement and Simulation Effects

This section investigates influences from the data measurement method and effects
of the simulation.

The data points are extracted from the sample by the ‘slicing method’. For each
data point a corresponding histogram of the J/ψπ+π− mass spectrum is fitted using
a binned likelihood fit. The fit uses a fixed signal shape for the determination of the
yield in each angular interval. It may however be, that because of detector effects,
the mass or the width shows a dependence on the angular distribution, and with
that on the angular bins. This effect is investigated by studying the mass and the
width of the X(3872) in each angular variable separately. They are determined in
each angular bin by a fit to the invariant J/ψπ+π− mass, where either the mass or
the width is not fixed, but left as a free parameter to be determined. Figures 3.20
and 3.21 show the fitted values for width and position in the X(3872) case. All
distributions are well compatible with a constant behavior.

The check is also performed on the ψ(2S). Figures 3.22 and 3.23 illustrate the
behavior of the position and the width of the narrow part of the signal (The signal
is parameterized by two Gaussian functions with common mean, unlike the X(3872)
which only uses one Gaussian function). Here a dependence is observed in the
helicity angle of the dimuon system, which is parameterized as

σ(| cos(θJ/ψ)|) = 2.65 MeV/c2 + 0.34 MeV/c2 | cos(θJ/ψ)|2.
Because of this effect, all ψ(2S) fits which determine angular distributions based on
intervals in | cos(θJ/ψ)| use ψ(2S) widths according to above dependence by default.
The effect of neglecting this dependence in the JPC comparisons is small. Completely
fixing the width as constant in the fit function results in the same χ2 of 15.07 for the
Novikov model and a slightly worse χ2 of 24.35 (instead of 23.50) for JPC = 1−−.
Besides the small dependence on | cos(θJ/ψ)|, no other dependences are found for the
ψ(2S).

A systematic source of uncertainty might be introduced by the particular selection
of the parameters used in the extraction of the signal distribution. This concerns
the histogram binning of the J/ψπ+π− mass spectrum and the fit model properties.
The effects of the choice of these parameters are investigated by applying numerous
variations. In order to reference to the variations they are numbered, where number 1
references the default analysis.

2. Change the size of the fit window to ±90 MeV/c2 (default ±110 MeV/c2).
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Analysis Check 1 Check 2 Check 3
JPC χ2 probability χ2 probability χ2 probability χ2 probability

1++ 13.2 0.28 14.9 0.19 12.9 0.30 18.9 0.06
2−+ 13.6 0.26 14.7 0.20 14.5 0.21 19.7 0.05
1−− 35.1 2.4×10−4 25.2 0.01 32.8 5.6×10−4 27.2 4.3×10−3

2+− 38.9 5.5×10−5 27.7 3.5×10−3 35.6 2.0×10−4 27.7 3.6×10−3

2−− 39.8 3.8×10−5 26.9 4.8×10−3 38.7 5.9×10−5 34.0 3.2×10−4

1+− 39.8 3.8×10−5 26.9 4.8×10−3 38.7 5.9×10−5 34.0 3.2×10−4

3+− 39.8 3.8×10−5 26.9 4.8×10−3 38.7 5.9×10−5 33.0 3.2×10−4

3−− 41.0 2.4×10−5 29.2 2.1×10−3 37.1 1.1×10−4 28.1 3.2×10−3

2++ 43.0 1.1×10−5 29.3 2.0×10−3 39.8 3.8×10−5 30.2 1.5×10−3

1−+ 45.4 4.1×10−6 34.8 2.7×10−4 35.1 2.4×10−4 27.6 3.8×10−3

0−+ 103.6 3.5×10−17 67.5 3.7×10−10 99.9 1.8×10−16 59.1 1.3×10−8

0+− 129.2 ≤1×10−20 86.3 9.0×10−14 108.2 4.1×10−18 55.5 6.3×10−8

0++ 163.1 ≤1×10−20 97.5 5.7×10−16 145.8 ≤1×10−20 76.7 6.5×10−12

Check 4 Check 5 Check 6 Check 7
JPC χ2 probability χ2 probability χ2 probability χ2 probability

1++ 11.1 0.44 13.4 0.27 15.3 0.17 14.6 0.20
2−+ 10.8 0.46 15.2 0.17 17.0 0.11 15.7 0.15
1−− 24.1 0.01 31.0 1.1×10−3 29.6 1.9×10−3 34.7 3.1×10−4

2+− 27.3 4.2×10−3 34.8 2.6×10−4 33.2 4.8×10−4 38.2 7.3×10−5

2−− 22.6 0.02 33.4 4.6×10−4 31.3 9.8×10−4 39.4 4.6×10−5

1+− 22.6 0.02 33.4 4.6×10−4 31.3 9.8×10−4 39.4 4.6×10−5

3+− 22.6 0.02 33.4 4.6×10−4 31.3 9.8×10−4 39.4 4.6×10−5

3−− 28.9 2.4×10−3 36.9 1.2×10−4 35.2 2.3×10−4 40.1 3.5×10−5

2++ 28.8 2.4×10−3 37.7 8.9×10−5 35.4 2.1×10−4 42.2 1.5×10−5

1−+ 33.7 4.0×10−4 36.3 1.5×10−4 35.2 2.3×10−3 42.9 1.1×10−5

0−+ 61.3 5.4×10−9 107.9 4.8×10−18 102.7 5.3×10−17 108.9 3.0×10−18

0+− 87.8 4.5×10−14 120.2 ≤1×10−20 113.0 4.3×10−19 122.1 ≤1×10−20

0++ 100.7 1.3×10−16 143.2 ≤1×10−20 130.7 ≤1×10−20 158.2 ≤1×10−20

Table 3.9: Results of the performed cross checks. Listed are the hypothesis, the obtained
χ2 and the corresponding χ2 probability for 11 degrees of freedom. The ‘default’ result is
given as reference. The cross-check definitions are explained in the text.
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Figure 3.20: Dependence of the X(3872) mass on the decay angles. Every distribution is
compatible with a mean of 3.8717 GeV/c2. In the 10th bin of the ∆Φ plot, the fit latches
onto a statistical fluctuation at m = 3.9 GeV/c2 and does not return a meaningful value.
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Figure 3.21: Dependence of the X(3872) width on the decay angles. Every distribution is
compatible with a mean of 5.0 MeV/c2.
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Figure 3.22: Dependence of the ψ(2S) position on the decay angles. Every distribution is
compatible with a mean of 3.68604 GeV/c2.
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Figure 3.23: Dependence of the ψ(2S) width on the decay angles. The dependence in
cos(θJ/ψ) is fitted by σ(| cos(θJ/ψ)|) = 2.65 MeV/c2 + 0.34 MeV/c2 | cos(θJ/ψ)|2. The other
widths are compatible with a mean of 2.752 MeV/c2.
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3. Change the size of the fit window to ±130 MeV/c2 (default ±110 MeV/c2).

4. Change the histogram bin width to 2.86 MeV/c2 (default 2.5 MeV/c2).

5. Change the histogram bin width to 2.00 MeV/c2 (default 2.5 MeV/c2).

6. Vary fixed X(3872) mass by +1σ to 3.8720 GeV/c2 (default 3.8717 GeV/c2).

7. Vary fixed X(3872) mass by -1σ to 3.8714 GeV/c2 (default 3.8717 GeV/c2).

8. Vary fixed X(3872) width by +1σ to 5.3 MeV/c2 (default 5.0 MeV/c2).

9. Vary fixed X(3872) width by -1σ to 4.7 MeV/c2 (default 5.0 MeV/c2).

In the simulation of the matrix element all terms that affect the distribution of
the dipion mass are fixed to a model supposed to describe the X(3872) dipion mass
distribution. This particular description consists of using the shape of a ρ in relative
orbital angular momentum L = 0 with the J/ψ and using a formfactor radius of
rππ = 1 fm. Although direct correlations to the angular distributions do not exist,
detector acceptance might be responsible for indirect effects. A possible influence
on the angular distributions is checked by the very drastic changes of

10. fixing the formfactor radius rππ to 0.001 fm (default 1 fm),

11. fixing the formfactor radius rππ to 100.0 fm (default 1 fm),

12. using a simple phase space behavior for the dipion mass shape, instead of a
resonance structure.

The simulation of the X(3872) events proofs to be quite successful with a simple
model as shown in section 3.3. The behavior of pT and η is however only confirmed
within a relatively large statistical uncertainty. The following checks were performed
to investigate dependences under simulation changes:

13. The reweighting in pT,X , introduced to achieve better agreement with the
ψ(2S), is not applied.

14. The reweighting in |ηX |, introduced to achieve better agreement with the
ψ(2S), is not applied.

15. The pion efficiency as a function of pT,π is not applied.

16. The COT efficiency as a function of φ is not applied.

17. The ‘effective’ η correction to smear the z-distribution of the interaction point
is not applied.

The results of these checks can be found in table 3.10. Figure 3.24 shows a graph-
ical representation of the change in χ2 for the different variations. All values are
well consistent with the results from the regular analysis and do not indicate any
systematic effects which could affect the final conclusions.
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JPC default C2 C3 C4 C5 C6 C6 C8 C9

1++ 13.2 13.9 11.0 13.8 12.9 13.1 13.4 13.4 13.4
2−+ 13.6 14.5 11.5 14.1 13.0 13.4 13.7 13.7 13.7
1−− 35.1 33.9 33.7 37.5 35.4 34.8 35.4 35.6 35.3
2+− 38.9 37.1 37.2 41.0 39.0 38.6 39.2 39.3 39.2
2−− 39.8 39.3 40.2 43.1 41.2 39.3 40.3 40.6 40.4
1+− 39.8 39.3 40.2 43.1 41.2 39.3 40.3 40.6 40.4
3+− 39.8 39.3 40.2 43.1 41.2 39.3 40.3 40.6 40.4
3−− 41.0 39.0 39.2 43.0 41.0 40.7 41.2 41.4 41.3
2++ 43.0 41.1 41.8 45.7 43.4 42.6 43.4 43.5 43.4
1−+ 45.4 42.5 43.4 48.5 46.2 45.2 45.5 45.8 45.7
0−+ 103.6 99.7 105.0 98.3 101.0 103.4 103.5 103.9 103.8
0+− 129.2 119.0 127.6 128.6 127.3 129.1 128.9 129.7 129.6
0++ 163.1 151.6 165.4 166.8 164.0 162.3 163.4 164.4 164.0

JPC C10 C11 C12 C13 C14 C15 C16 C17

1++ 13.2 13.3 13.7 13.4 13.4 13.7 13.5 14.7
2−+ 13.5 13.6 14.3 13.6 13.7 14.0 13.7 14.8
1−− 35.0 35.2 36.5 35.9 35.9 35.4 34.8 38.1
2+− 38.8 38.9 40.2 39.7 39.7 39.3 38.7 42.1
2−− 40.4 39.9 41.8 40.4 41.2 39.0 38.8 41.2
1+− 40.4 39.9 41.8 40.4 41.2 39.0 38.8 41.2
3+− 40.4 39.9 41.8 40.4 41.2 39.0 38.8 41.2
3−− 40.9 41.0 42.2 41.8 41.8 41.5 40.8 44.3
2++ 42.8 43.1 44.6 43.9 43.9 43.2 42.6 46.2
1−+ 45.4 45.4 45.8 46.2 46.1 46.0 45.8 48.6
0−+ 103.5 103.7 105.7 103.3 101.0 103.7 103.3 102.9
0+− 130.0 129.2 129.7 130.0 127.3 130.5 129.6 133.4
0++ 163.9 163.1 164.7 163.9 164.0 163.4 162.4 167.3

Table 3.10: Results of the different systematic checks. Listed are the hypothesis and the
χ2 for 11 degrees of freedom for all checks. The ‘default’ result is given as reference.
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96 Chapter 3. Determination of the Quantum Numbers JPC



Chapter 4

Measurement of the X(3872) Mass

A very important property of the X(3872) is its mass. On the one hand the value is
interesting on its own because it does not agree very well with predicted charmonium
masses. On the other hand and more importantly, the mass difference to the sum
of the D0 and D0∗ masses is of interest. The picture of a bound ‘molecular’ state of
these two mesons is very popular because of the near identity in mass between the
X(3872) mass and the summed D0 and D0∗ masses. Whether or not such a state is
bound crucially depends on the question, whether the X(3872) is heavier or lighter
than the sum of the ‘constituent’ masses. In order to answer this question a precise
mass determination of the X(3872) is required.

Some exotic hypotheses to explain the X(3872) predict a whole spectrum of exotic
states out of which the X(3872) is only one. The multiquark model of Maiani et

al. [34] accommodates the X(3872) as a mixture of two neutral flavor states and
predicts the existence of a partner state of similar mass. This hypothesis can be
tested by investigating whether the observed X(3872) mass structure is compatible
with two separate peaks or not.

This chapter will first describe the selection process for the measured data sample
and the creation of the corresponding simulated samples in section 4.1. Section 4.2
will investigate the agreement of the observed mass spectrum with two separate sig-
nal peaks. Finally, the mass of the X(3872) will be precisely measured in section 4.3.

4.1 Sample Selection

The measured data sample is obtained in the same way as the data sample for the
JPC measurement. Two muons are combined to a J/ψ candidate, which in turn
is combined with two pions to form an X(3872) candidate. While in the angular
analysis a simple simulation was sufficient to model the important detector effects,
a more detailed, ‘realistic’ simulation of the CDF detector is required to properly
model the detector mass resolution.
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particle candidate requirements

pion candidate
pT > 0.4 GeV/c

|η| < 1
≥ 10 COT hits, ≥ 2 SVX hits

muon candidate
pT > 1.5 GeV/c

|η| < 1
≥ 10 COT hits, ≥ 2 SVX hits

J/ψ candidate
2.95 GeV/c2 < m(µµ) < 3.25 GeV/c2

χ2(µ+µ−) < 30

X(3872) candidate
m(J/ψππ) < 4.0 GeV/c2

pT > 3.5 GeV/c
χ2(J/ψππ) < 40

Table 4.1: X(3872) preselection cuts.

4.1.1 Preselection of the Measured Data Sample

In the analysis of the X(3872) mass all available data until August 2007 is being
used. This corresponds to the run range 138425–246231. The J/ψ → µ+µ− trigger
is used to select the data, stored in the datasets jpmm0d, jpmm0h, jpmm0i, and
jpmm0j. The amount of measured data corresponds to an integrated luminosity of
L ≈ 2.4 fb−1.

As in the JPC analysis, the reconstruction procedure combines a J/ψ candidate with
two pion candidates to an X(3872) candidate. The reconstruction code is based on
the generic BottomMods package [98, 99], using a custom steering file to specify the
reconstruction chain.

The preselection requirements are listed in table 4.1. The two pions are required to
have opposite charge for the signal sample, however, also the wrong-sign combina-
tions are stored for cross-checks. The requirements are designed to reject obvious
background and to apply basic quality criteria. In comparison to the JPC analysis,
only tracks with at least 2 hits in the silicon layers are used in order to improve the
mass resolution.

4.1.2 Signal Selection Procedure

The final X(3872) signal selection procedure uses a neural network approach. A
neural network combines the information from multiple variables and their correla-
tions in a single discriminative variable. This discriminative variable can be used in
different ways, here it is simply used as a cut variable. The neural network package
employed in this analysis is the product NeuroBayes R©, developed by the company
Phi-T [100, 101]. One of its biggest advantages is the sophisticated preprocessing of
the input variables.
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# variable description

1 training target known training classification, signal=1, background=0
2 χ2(J/ψππ) J/ψππ vertex fit quality
3 pT,X(3872) transverse momentum of the X(3872) candidate
4 χ2(µµ) µµ vertex fit quality
5 pT,J/ψ transverse momentum of the J/ψ candidate
6 mJ/ψ fitted mass of the J/ψ candidate
7 max(NNµ+ , NNµ−) larger muon network probability

8 min(NNµ+ , NNµ−) smaller muon network probability

9 max(pT,µ+ , pT,µ−) larger transverse muon momentum
10 max(∆Rπ+ , ∆Rπ−) larger pion cone radius relative to X(3872)
11 max(mJ/ψπ+ , mJ/ψπ−) larger mass of J/ψπ+ and J/ψπ− systems
12 Q Q value of the decay
13 max(pT,π+ , pT,π−) larger transverse pion momentum
14 min(pT,π+, pT,π−) smaller transverse pion momentum
15 |ηπ,mean| absolute average pion pseudorapidity

Table 4.2: Input variables for the X(3872) selection network. The muon network proba-
bility is the output of a dedicated neural network and gives an estimate whether a particle
is a muon or not. The first variable is not a real input variable but rather denotes whether
the given event is a signal or background event.

The network is trained with sample events to learn the difference between signal
events and background events. Two samples are required for training, one containing
signal events and one containing background events. The signal event sample is
provided by a sample of simulated events, which is described in section 4.1.3. For
the background event sample real events from the preselection sample are used.
They are taken from the sideband mass region of the X(3872). This avoids the
presence of a significant amount of real signal events in the background sample
while at the same time it can be confidently assumed that the sideband background
events show similar properties as the background events at the true signal mass.
The mass sidebands are defined as two 25 MeV/c2 broad mass windows: [3816.7 −
3841.7; 3901.7 − 3926.7] MeV/c2.

In order to be able to separate between signal and background, the network needs
input variables that describe the characteristics of an event. To add to the separation
power of the whole network, the input variables usually have either separation power
on their own, or in connection with other variables. The variables used in the
selection are listed in table 4.2.

One very important aspect must be considered. The J/ψππ mass as the most obvious
separating variable is not allowed to enter the list of variables. The reason is that
the signal and background samples have exclusive mass regions. As a consequence,
the network training would primarily pick up the fact that any signal event is in the
vicinity of the true X(3872) mass, while all background events are not. Applying
this training result on real measurements would reject all candidates not close to
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the signal mass. This is a most undesirable effect, since it leads to the fact that
the number of background entries — and with it the number of signal entries —
can no longer be interpolated from the rest of the mass spectrum. The background
suppression in the signal range becomes worse as well, because other discriminating
information gets suppressed compared to the dominant discriminating information
from the mass. It even must not be possible to obtain information about the J/ψππ
mass from other variables in the list. As a consequence, all input variables which
allow implicit deductions on the J/ψππ mass are transformed so that they are no
longer directly correlated to the J/ψππ mass.

Two types of transformations are performed. On the one hand a variable A can be
correlated to the J/ψππ mass in the regular sense, e.g. higher values of A on average
correspond to higher values of J/ψππ. In such a case the network is not trained with
the variable A. Instead, a corrected variable A/F (mJ/ψππ) is used, where F (mJ/ψππ)
is the mean value of A for a given value of the J/ψππ mass mJ/ψππ. F (mJ/ψππ) is
determined from a fit to the correlation on the wrong-sign J/ψππ candidate sample.
This transformation is performed for all transverse momenta, the cone size, the
average pion pseudorapidity, and the Q value. On the other hand, the J/ψππ mass
can be correlated to a variable B if the allowed range for B depends on the value
of the J/ψππ mass. As an example the J/ψπ+ mass is restricted to small values if
the J/ψππ mass is small. This is resolved by transforming the variable B into the
range between 0 and 1, where 0 means that B has the smallest possible value for a
given value of the J/ψππ mass while 1 means that it has the largest possible value.
This transformation is performed for the Q value and the J/ψπ masses.

Some training control plots are shown in figure 4.1. The purity shows a linear
dependence on the network output which indicates that the training did converge in
its training process. It can be seen that signal and background events show a good
separation. Many background events can be almost unambiguously rejected. It is
however difficult to select a pure signal sample with decent efficiency. The signal
network output, which is a measure of purity, peaks at 0.8 and not at 1.0. The
network is not able to find events, which can unambiguously be identified as signal
events. Also shown are the correlations between the input variables.

It needs to be verified that in the training of the network no dependences on the
J/ψππ mass were learned. This check is performed by applying the training results
on the wrong-sign sample, i.e. the sample where the two pions have the same charge.
Figure 4.2 shows the mean network output as a function of the J/ψππ mass. No
peaking structure is observed at the X(3872) mass or at any other mass. This shows
that the network did not pick up any peaking mass dependence.

The data selection is obtained by a cut on the neural network output. The cut
value is chosen by optimizing the significance-like quantity K, defined by K =
NMC/

√
Ndata. NMC is the number of simulated signal events and Ndata the number

of measured data events, both counted in a mass window of ±10MeV/c2 around the
signal mass of mX(3872) = 3871.7 MeV/c2. With the ‘regular’ significance definition

Kreg = S/
√
S +B, where S and B are the number of signal and background events
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Figure 4.1: Control plots of the X(3872) neural network training. The first plot illustrates
the correlations between the input variables (see table ??). The middle plot shows the
network output for the background sample (black line) and the signal sample (red). The
signal purity is shown in the bottom plot.
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Figure 4.3: Significance scan of the neural network cut. A value of 0.25 is selected. The
right plots shows the J/ψππ mass spectrum after this cut on the network output (black).
The red histogram shows the distribution of the rejected events. The cut reduces the
background by a factor of ≈ 10 while keeping ≈ 50% of the signal.

in measured data, K is

K =
NMC√
Ndata

=
nS√
S +B

= nKreg,

and proportional (by an arbitrary factor n) to the regular significance. This assumes
that the signal simulation behaves in the same way as real signal in measured data.
The scan of K is shown in figure 4.3. From the plateau of high values a value
with good signal purity is chosen. This leads to the selection of the cut on the
neural network output of greater than 0.25. Also shown is the mass spectrum for
the selection with a neural network output larger and smaller than 0.25. It can be
seen that the background is reduced by a factor of 10. From the ψ(2S) signal size
it can be estimated that the signal selection efficiency is ≈ 50%.

In addition to the selection by the cut on the neural network output, a cut is
performed on the number of X(3872) candidates per detector event to increase the
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Figure 4.4: Significance scan of the cut on the number of candidates. A value of smaller
or equal than three is selected. The right plots shows the J/ψππ mass spectrum after this
cut on the number of candidates (black). The red histogram shows the distribution of the
rejected events.

a priori signal probability in each detector event. The number of candidates per
detector event is determined after the preselection. Since the number of candidates
is not modelled in the simulation, the selection is performed in a data-driven way.
The significance Kreg is determined by a fit to the mass spectrum, using a second
order polynomial for the background and a Gaussian function for the signal. Signal
and background yields are determined within a ±10 MeV/c2 mass window around
a signal mass of mX(3872) = 3871.5 MeV/c2. Figure 4.4 shows the significance scan.
As a result a cut of smaller or equal than three is obtained. Also shown is the mass
spectrum for the new selection with the requirement on the number of candidates.

The final selection requirement is the trigger confirmation. This rejects all events
where the J/ψ in the J/ψππ candidate was not the one that triggered the recording
of the event. This requirement has only very slight effects because the probability
is very small to have more than one J/ψ in a detector event. It is applied to ensure
the agreement between measured data and generated simulation, where only J/ψ
mesons occur that also were triggered.

The selection was developed with the data available until March 2007. An increase in
statistics by 20% was achieved by adding new data until August 2007. This increase
did not necessitate a re-optimization of the selection, so that the same selection
is applied. The mass spectrum after the final selection is shown in figure 4.5. A
fit to the spectrum in the X(3872) range using a second order polynomial for the
background description and a Gaussian function for the signal description yields

mX(3872) = 3871.6 ± 0.2 MeV/c2,

σX(3872) = 4.3 ± 0.2 MeV/c2.

The significance in a ±10 MeV/c2 window is 32.9. A similar fit to the ψ(2S) results
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in

mψ(2S) = 3686.01 ± 0.02 MeV/c2,

σψ(2S) = 3.23 ± 0.02 MeV/c2.

According to the fits, approximately 34500 ψ(2S) candidates and 5800 X(3872)
candidates are selected.

4.1.3 Simulation Sample Generation

For the mass analysis, the simulated samples are generated with the standard CDF
full simulation, release 6.1.4mc. Two high statistics samples are created, one sample
for the decay X(3872) → J/ψπ+π− and one for the decay ψ(2S) → J/ψπ+π−. The
generation proceeds in the following steps:

1. Generation of the initial state momentum. The software generates values of
transverse momentum following a distribution measured for B-mesons. The
mass is fixed to the ψ(2S) or X(3872) mass, while the pseudorapidity and the
azimuthal angle φ are distributed uniformly.

2. Decay into the final state. The EvtGen package [102] is used. Is is most
convenient to consider only phase space at this stage and reweight the events
later according to their decay matrix element.

3. The response of the CDF detector to the created particles is modelled by the
full GEANT-based simulation of the CDF detector [103, 104].

4. Whether a detector event is accepted and recorded is decided in the trigger
simulation.

5. The simulated event gets reconstructed in the same way as a real measured
event.

The same preselection cuts as for the measured data sample are applied. As a
next step the simulated samples are reweighted to account for the respective decay
specifics. Three separate aspects require reweighting:

• Decay weight: The simulation assumes a phase-space decay of the initial state
into the final state. Each event needs to be reweighted with a decay weight. In
case of the ψ(2S) the Novikov-Shifman decay weight is used. For the X(3872)
the same weight as in the JPC analysis is used. Because of the small effect
and the ambiguity in choice between 1++ and 2−+ all angular dependences are
ignored, effectively resulting in a pure modelling of an intermediate ρ0 meson
for the dipion system. These weights are described in section 3.1.
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Figure 4.5: The final mass spectrum of the selection. Shown are the whole spectrum from
threshold to 4.0 GeV/c2 (top) and the range focussing on the X(3872) (bottom). The
bottom plot also shows a fit to the spectrum, using a second order polynomial for the
background description and a Gaussian function for the signal description.
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• Transverse momentum: The simulation uses a generic transverse momentum
spectrum for the decaying particle, not particularly designed for the ψ(2S)
or the X(3872). Each event is reweighted so that the total simulated trans-
verse momentum distribution agrees with the measured transverse momentum
distribution after preselection. The reweighting function is obtained by fitting
the ratio between measured and simulated transverse momentum distribution.

• Trigger path: While the used trigger paths that lead to the recording of events
are identical in measured and simulated data, there are slight differences in the
distributions of how often a certain trigger path is used. The most important
aspect is the ratio between trigger paths that only use the central muon cham-
bers CMU/CMP to the trigger paths that also allow for muons from the CMX,
because this ratio affects the muon pseudorapidity distribution. Each event is
reweighted to account for the difference in simulation and real measurement.

At preselection level both the weight for the transverse momentum and for the trigger
path are determined from the distributions of the ψ(2S). The reason is that the
measured data sample after preselection does not yet allow for a measurement of the
X(3872) distributions with reasonable uncertainty. The distribution measurement
is performed with the ‘slicing method’ explained in section 3.2.4.

The generated X(3872) simulated sample is used as signal sample input for the
neural network training in section 4.1.2.

4.1.4 Final Reweighting of the Simulated Samples

After applying the final selection from section 4.1.2 on both measured data and
simulated samples, the reweighting procedure from the previous section is repeated.
The reason is that after the final selection a good signal significance has been ob-
tained in measured data, so that the data behavior can be measured more precisely.
Even more important, now it is possible to measure X(3872) distributions with
sufficiently small uncertainty.

The reweighting procedure is thus repeated, separate for the ψ(2S) and the X(3872)
samples. The main steps are identical compared to the previous reweighting process,
slight changes are introduced for the transverse momentum reweighting.

1. Reweight each event with the specific X(3872)/ψ(2S) decay weight.

2. Reweight each event so that the overall muon trigger CMU/CMX ratio agrees
between simulation and measured data.

3. Reweight each event so that the overall transverse momentum distributions of
the pion and X(3872)/ψ(2S) candidates agree between simulation and mea-
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sured data. The reweighting uses the following functions:

f(pT,J/ψππ) ∝ exp(a0 pT,J/ψππ) p
a1
T,J/ψππ ,

f(pT,π) ∝ 1 − b0
pT,π − b1

.

The parameters of these functions are obtained by a simultaneous fit. This
fit minimizes a combined χ2 value which is obtained as a sum from single
χ2 values, describing the agreement between a measured distribution and a
reweighted simulated distribution. The distributions of pT,J/ψππ, pT,π+, and
pT,π− are used.

The agreement of the simulated events with the measured distributions after the final
reweighting is shown in figure 4.6 for the ψ(2S) and in figure 4.7 for the X(3872).
Both show good agreement.

4.2 Analysis of the X(3872) Mass Shape

Multiquark hypotheses are among the most prominent models to explain theX(3872).
In most cases they do not only accommodate the X(3872), but also predict a spec-
trum of different states. The X(3872) is described by a combination of two charm
quarks with two light quarks. Because multiple combinations of light quarks are
possible, also multiple X(3872)-like states with similar mass are possible.

If the multiquark hypothesis holds for the X(3872), it is thus possible that the
observed X(3872) enhancement in the J/ψπ+π− mass spectrum is in reality not only
one peak, but rather an unresolved structure of two peaks. This hypothesis can to
some extent be valid for the earlier confirmations of the X(3872) at CDF, since the
mass resolution of the measurement is of the order of 5MeV/c2. However, also the B-
factories with approximately twice as good resolution only observe one peak. Maiani
et al. explain this behavior in their multiquark model [34, 41]. It is suggested that
only one of the neutral multiquark states is predominantly produced in the observed
decay of a charged b-meson, i.e. in the decay B+ → X(3872)K+. The other neutral
state is produced in the decay of a neutral b-meson B0 → X(3872)K0

S.

At the Tevatron, the X(3872) production via the decay of b-mesons is small com-
pared to the one from direct fragmentation. As a consequence, both neutral states
should be observable at the same time in the decay to J/ψπ+π−. If the mass dif-
ference of two states is smaller or of the order of the detector mass resolution, they
cannot be clearly separated. However, it is still possible to draw conclusions which
allow to answer the question whether the description of the measured signal requires
two separate states or if one state suffices.
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Figure 4.6: Comparison between the simulated and the measured distributions in the
ψ(2S) decay. Shown are the transverse momenta and pseudorapidities of the involved
particles.
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Figure 4.7: Comparison between the simulated and the measured distributions in the
X(3872) decay. Shown are the transverse momenta and pseudorapidities of the involved
particles.
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4.2.1 Hypothesis Test Procedure

The basic idea of the hypothesis test procedure is simple. Two peaks, separated in
mass by a mass difference ∆m, will appear as a broader structure than one peak.
Any distribution that uses a dispersion parameter V to describe the width of the
signal structure has to assign a larger dispersion parameter for two separated peaks
than it needs to for a single peak. The further the two peaks are apart, the larger
the dispersion parameter needs to get.

The hypothesis test procedure uses the following steps:

1. Create a fit model to describe the measured mass distribution.

2. Derive a test quantity from the fit model which can be used to quantify the
agreement of the fitted sample with a hypothesis.

3. Measure the value of the test quantity in data.

4. Obtain the expected distribution of the test quantity for a given hypothesis
by generating simulated experiments.

5. Deduce the agreement of the measurement with the two hypotheses:

• ‘Only one signal peak is present.’

• ‘Two peaks are present with mass difference ∆m.’

4.2.2 Fit Model and Test Quantity

The shape of a single signal peak is modelled by a non-relativistic Breit-Wigner
function of intrinsic width Γ. For the intrinsic width of the ψ(2S) the world average
value [5] of Γψ(2S) = 0.337 MeV is used. While the X(3872) is known to be compati-
ble with detector resolution, both Belle and BABAR measure non-zero values for the
central value of the width. Combining the measured value ΓX = 1.4 ± 0.7 MeV [1]
from Belle with the measurement ΓX = 1.05± 1.52± 0.24 MeV [7] from BABAR re-
sults in a mean value of ΓX = 1.34±0.64MeV, assuming uncorrelated uncertainties.

In addition, detector resolution effects will lead to further broadening of the struc-
ture. The mass resolution is modelled by two Gaussian functions with common
mean

fn Gauss(m;m0, σn) + (1 − fn) Gauss(m;m0, k σn).

fn is the contributing fraction of the narrow Gaussian function, σn is the width
of the narrow Gaussian function, and k is a multiplicative factor that denotes the
ratio between the width of the broad Gaussian function and the width of the narrow
Gaussian function. Each Gaussian function is properly normalized to one.

The mass resolution effects are determined from the simulated samples with real-
istically modelled detector. For this purpose a binned fit to the mass deviation of
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Figure 4.8: Expected mass resolution from the difference between generated and recon-
structed mass for the ψ(2S) (left) and the X(3872) (right). Because the X(3872) is
heavier, the final state particles have on average higher momenta and worse resolution.
The mass resolution is modelled by two Gaussian functions with common mean. Uni-
formly distributed background is added to the histogram to remove the effect of outliers
on the fit.

the simulation is performed. This is shown in figure 4.8. Uniformly distributed
background is added in order to minimize the danger that single outliers lead to an
unwanted broadening of the fitted Gaussian functions. For the ψ(2S), the fit results
in the resolution parameters σn = 2.43 MeV/c2, fn = 0.717, k = 2.04, while in case
of the X(3872) the values σn = 3.18 MeV/c2, fn = 0.675, k = 1.81 are obtained.

The folded effect of the Gaussian smearing of a non-relativistic Breit-Wigner dis-
tribution is described by the Voigt function. It has three parameters: the central
value m0 of the distribution, the Gaussian width σ and the intrinsic Breit-Wigner
width Γ. Since the detector resolution is described by two Gaussian functions, the
total signal shape is described by a sum of two Voigt functions:

yS(m;m0, fn, σn, k,Γ) = fn Voigt(m;m0, σn,Γ) + (1 − fn) Voigt(m;m0, kσn,Γ).

The background function uses a simple second order polynomial function

yB(m; p1, p2) =
1

mh −ml

[
1 + p1x(m) + p2(3x(m)2 − 1)

]
,

where the nominal mass range [ml, mh] is transformed into the mass range [-1,1] by

x(m) = −1 +
2

mh −ml
(m−ml).

p1 and p2 are parameters for the slope and the curvature of the background descrip-
tion. By above construction, the background function is always normalized to one.
Background and signal part of the fit function are combined by

y(m) = N [fS yS(m;m0, fn, σn, k,Γ) + (1 − fS)yB(m; p1, p2)] ,

introducing the overall normalization N and the signal fraction fS.
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The effective width of the signal distribution will be used to define the test quantity,
because it is physically descriptive and robust to mismodelling of the signal shape.
To scale the overall width of the signal distribution all relevant parameters for the
width are scaled by the width scale t, which will be used as test quantity. With
a fixed yield ratio fn/(1 − fn) between the two Voigt functions and a fixed ratio
k between the broad resolution width and the narrow resolution width, only two
parameters determine the overall width of the resolution: the intrinsic width Γ and
the narrow resolution width σn. Both parameters are multiplied by the test quantity
t, i.e.

σn → t σn,

Γ → tΓ.

With fixed values for σn and Γ, t is the only free parameter to scale the signal width
of the fit function.

4.2.3 Width Scale Measurement

The data spectrum is fitted using the parameterization from section 4.2.2. Except
for the width scale t, all parameters defining the shape of the signal are fixed to the
following values:

parameter value ψ(2S) value X(3872)

intrinsic width Γ 0.337 MeV 1.34 MeV
narrow resolution width σn 2.43 MeV/c2 3.18 MeV/c2

narrow resolution fraction fn 0.717 0.675
broad/narrow width ratio k 2.04 1.81

The overall normalization N , the background shape parameters p1 and p2, the signal
fraction fS, the central position of the signal m0, and the width scale t remain free
parameters in the fit.

A histogram in the X(3872) mass range from 3.75 to 4.0 MeV/c2 and a bin width
of 0.5 MeV/c2 is filled with the measured data mass spectrum. Using a binned
likelihood ansatz to fit the total fit function y(m) to the histogram returns a width
scale tX(3872) = 1.052±0.047. An analogous fit to the ψ(2S) in the mass range from
3.60 to 3.75 MeV/c2 returns a width scale tψ(2S) = 1.049 ± 0.008. The measured
mass distributions with the fit projections are shown in figure 4.9. It should be
noted that the expected value for a one-peak hypothesis is not necessarily exactly
1.0 which will be explained in the next section.

4.2.4 Ensemble Creation

The measured value needs to be compared to the expected distribution of the width
scale t for a given hypothesis. This distribution is obtained from a large amount of
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Figure 4.9: Fit to the measured mass spectrum for the ψ(2S) (left) and the X(3872)
(right), resulting in the measured width scales.

simulated experiments, created according to the hypothesis. The tested hypotheses
read ‘Two peaks with signal yields N1 and N2 are present with mass difference ∆m.’
The one-peak hypothesis is obtained by setting ∆m to zero.

The experiments are generated according to:

• The combinatorial background is created according to the background part of
the fit to the measured data.

• Two peaks are created with mass difference ∆m and signal yields N1 and N2.
Their single shapes follow the parameterization from section 4.2.2.

This method assumes that mixing of the two states is only allowed as far as it does
neither change the combined mass spectrum nor the total yield as compared to
the simple incoherent addition of the two states. Furthermore the two states are
assumed to have the same shape. This assumes that the two states behave similarly
in their decay.

Multiple parameters that characterize the sample need to be determined. The overall
number of events Nsim in the sample is chosen after the number Ndata of events in
the data sample and varied according to a Poisson distribution with mean Ndata.

The background parameters and the fraction of signal events are modelled after
measured data as well. Their generation is based on their measured values and
correlations. The slope p1, the curvature p2, and the signal fraction fS are obtained
from a 3-dimensional Gaussian distribution, using the measured means and consid-
ering their covariance matrix. The number of background candidates is obtained
from the signal fraction fS and the total number of events Nsim.

Both the mass difference ∆m between the two signal peaks and the yield fraction of
the signal with lower mass f1 are external parameters and explicitly set, since they
define the hypothesis. By this, also the yield fraction of the higher mass signal is
determined. The total signal yield of the two signal peaks is calculated from the
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signal fraction fS and the total number of sample events Nsim. With the fraction
f1 the two signal yields N1 and N2 are obtained. The masses are chosen in such a
way that the ‘mass center’ equals the measured X(3872)/ψ(2S) mass M , i.e.

N1m1 +N2m2

N1 +N2
= M.

Combined with the relation m2 −m1 = ∆m this allows to determine the single peak
positions.

The determination of the parameters for the shape of a single signal peak is the most
critical and complicated aspect. Each single signal peak follows the description of
the sum of two Voigt functions as described in section 4.2.2. The description of the
resolution shape as a sum of two Gaussian functions is an effective description of
the detector effects. The ratio k between the two Gaussian widths and the yield
fraction fn of the narrow Gaussian function are assumed to be uncritical, so that k
and fn are fixed to the values as determined from the simulation.

The situation is different for the overall resolution width, which is determined by σn.
This value is critical for the result of the analysis, since an under- or overestimation
of the detector resolution will systematically shift the predicted width scale t for
any hypothesis. For example, mistakenly assuming the resolution too narrow in the
creation of the simulated mass spectra will shift the expected width scales to smaller
values. The opposite effect is caused by creating too broad widths. To validate the
mass resolution model derived from simulation, the shape function is tested using the
ψ(2S). For this, a similar measurement as in section 4.2.3 is performed. However,
this time only the resolution widths are allowed to scale by a factor sr, since only
the effect of the resolution is studied. The intrinsic width Γ is kept fixed, i.e.

σn → sr σn,

Γ → Γ.

This of course assumes that the world average value for the intrinsic ψ(2S) decay
width is correct. It is known that for the ψ(2S) only one state contributes to the
measured signal peak width. Any result not compatible with the value of sr = 1 will
thus indicate a disagreement in resolution between measured data and simulation.
This is precisely checked by performing an unbinned likelihood fit1 to the measured
spectrum in the ψ(2S) mass range from 3.6 GeV/c2 to 3.75 GeV/c2. The fit returns
a value for the resolution scale factor of sr = 1.050 ± 0.008. This value indicates
that the resolution in measured data is underestimated by the simulation by 5%.

This raises the decisive question by how much the simulated resolution is different
from the real resolution in the case of theX(3872). This can of course not be directly
checked, since any direct measurement could both indicate a resolution mismatch

1In an unbinned maximum likelihood fit, extra care needs to be taken in the normalization
of the signal function. Since the Breit-Wigner part of the fit function creates long tails in the
distribution, the Voigt function needs to be explicitly normalized to account for the signal part
which is outside the fitted range.
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Figure 4.10: The disagreement in the number of COT hits, in this case for a π+ from
the ψ(2S) decay. Shown are the distribution of the number of drift chamber hits per
track, both for measured data (points) and for simulation (histogram). The simulation
systematically picks up more hits, which improves the track measurement.

or the existence of two peaks. In order to understand the resolution difference, an
extensive check was performed to compare event distributions between the measured
data and the simulation. Only one major difference was found: all final state tracks
from the simulation had significantly more hits in the drift chamber than their
measured counterparts (see figure 4.10). It is probable that this effect is caused by
the difference in detector occupancy in measured data and the simulation. While
in real measured data events a large number of background tracks is present, the
simulated event is only occupied with particles from the simulated decay. As a
result, both a larger number and less ambiguous detector hits are available for
the track reconstruction algorithm. No matter the cause, the effect is a slightly
better momentum resolution per track, which causes an improvement in the mass
resolution. In this case, it is a reasonable assumption that any difference in resolution
between simulation and measured data should be similar for similar decays in a
similar momentum regime.

A test was performed with measured and simulated samples of the decay D+∗ →
D0π+, with D0 → ππ, D0 → Kπ, or D0 → KK. In those three cases, resolution
width scale factors with the values of sr = 1.025 − 1.055 were obtained. This
strengthens the explanation of a general simulation effect. As a consequence, the
resolution of the X(3872) derived from simulation will be scaled by a value of 1.05,
since the ψ(2S) gives the best estimate for the X(3872) according to decay topology
and involved momenta. However, a systematic uncertainty of 3% will be assigned
based on the spread of values in the D+∗ cases. The same treatment will be applied
for the ψ(2S).

The systematic uncertainty of the resolution scale needs to be accounted for in
the ensemble creation. It is implemented by allowing the resolution scale sr to vary
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parameter created according to

total number of events Poisson-distributed with mean from measurement
background slope 3d Gaussian distr. using measured means,correlations
background curvature 3d Gaussian distr. using measured means,correlations
signal fraction 3d Gaussian distr. using measured means,correlations
yield ratio N1, N2 externally set, defines hypothesis
mass difference m2 −m1 externally set, defines hypothesis
masses m1, m2 weighted mean equals measured value
resolution narrow width σn simulation value, multiplied by (1.05 ± 0.03)
res. narrow yield fraction fn simulation value
res. width ratio k simulation value
intrinsic width Γ world average value, varied by uncertainty

Table 4.3: Summary of the required parameters for the creation of the simulated experi-
ments and the distribution these parameters are created after.

according to a Gaussian distribution with mean 1.05 and width 0.03. The resolution
will thus be crated using a value of

σn → sr σn

for the width of the narrow Gaussian distribution in the resolution function. This is
the main reason why the expected width scale t for the one-peak hypothesis is not
1.0.

The intrinsic width Γ is modelled after measured data. The value is also not unam-
biguously known, resulting in a systematic uncertainty. This is treated identically
as the uncertainty for the resolution scale. For the ψ(2S) the width is drawn from
a Gaussian distribution, where the Gaussian mean is given by the world average
value of Γψ(2S) = 0.337MeV and the Gaussian width by the uncertainty of the world
average, σΓ = 0.013 MeV [5]. A similar procedure is used for the X(3872). The
combined measurement values of Belle and BABAR are used, leading to an average
of ΓX = 1.34 MeV and an uncertainty of σΓ = 0.64 MeV. The intrinsic widths,
drawn from a Gaussian distribution, are required to be greater than zero. Taking
the width average of Belle and BABAR is motivated by the assumption, that these
two experiments measure only one single peak in B0 decays, while the second sig-
nal, if existent, is suppressed. If this were not the case, Belle and BABAR would
either have observed two separate peaks already, or the mass splitting would be
unmeasurably small.

Table 4.3 summarizes the determination of the parameters, necessary to create the
simulated experiments. NB background events are created according to the back-
ground parameterization, while N1 (N2) signal events are created according to the
signal parameterization of two Voigt functions for peak 1 (2). Systematic and sta-
tistical uncertainties are considered by varying the ensemble parameters according
to their uncertainty.



4.2. Analysis of the X(3872) Mass Shape 117

width scale  t
0.8 0.9 1 1.1 1.2 1.3 1.4

N
 e

xp
er

im
en

ts

0

200

400

600

800

1000

1200

1400

1600

Figure 4.11: The distribution of the expected values of the width scale t for the null
hypothesis ‘only one signal peak’. The line at t = 1.052 illustrates the measured value.

4.2.5 Ensemble Test Evaluation

For each hypothesis the distribution of the width scale t is obtained with an ensemble
of simulated mass spectra. The distribution of t for the hypothesis defined by
the mass difference ∆M and the yield fraction f1 is denoted by g(t; ∆m, f1). The
measured value of t is compared to distributions of different hypotheses.

The first studied hypothesis is the null hypothesis. The existence of only one peak is
studied by investigating the distribution for the samples with ∆m = 0. Figure 4.11
shows the expected distribution of the width scale t for the null hypothesis and the
measured value of 1.052. The measured value is near the center of the distribution
and thus clearly compatible with the null hypothesis.

As a next step, a limit on the allowed values of ∆m is obtained under the assumption
of f1 = 50%, i.e. a yield ratio of 50 : 50 between the two signal peaks. For this
fraction the width scale is most sensitive to changes in ∆m. With growing ∆m the
distribution of t will shift to higher values, until at some point the measured value
becomes too small to be compatible with the expected distribution, i.e. the measured
width becomes too narrow to be compatible with the broad width expectations.
This is illustrated in figures 4.11 and 4.12 where the distribution of the width scale
is shown for the one-peak hypothesis and two two-peak hypotheses. It can be clearly
seen that the expected widths are shifted to higher values for larger mass differences.
This motivates the construction of a one-sided confidence region. The confidence
region defines the region that contains the true value of t for a given hypothesis at a
confidence level of n%, where n is the desired confidence level. In this analysis limits
are calculated using 90% and 95% confidence level regions. Since the confidence
region is one-sided, the definition

n(∆m, f1) =

∫ ∞

t(n)

g(t; ∆m, f1)dt



118 Chapter 4. Measurement of the X(3872) Mass

width scale  t
0.8 0.9 1 1.1 1.2 1.3 1.4

N
 e

xp
er

im
en

ts

0

50

100

150

200

250

300

350

width scale  t
0.8 0.9 1 1.1 1.2 1.3 1.4

N
 e

xp
er

im
en

ts

0

50

100

150

200

250

300

350

Figure 4.12: The distribution of the expected values of the width scale t for the two-peak
hypotheses with mass difference ∆m = 3.2 MeV/c2 (left) and ∆m = 3.6 MeV/c2 (right).
Both hypotheses use the yield ratio 50 : 50. The line at t = 1.052 illustrates the measured
value. For these hypotheses, the measured width scale approximately equals the lower
border of the 90% (left) and 95% (right) level confidence regions.

is used.

The limit determination is visualized in figure 4.13. As a function of the mass
difference ∆m the values of the critical width scale t for both the 90% and 95%
confidence level regions are shown. The critical width scales t(90%), t(95%) mark
the lower border of the confidence regions, i.e. the value for which an observed
value is no longer part of the confidence region. It can be seen that the confidence
region borders rise with the mass difference. For mass differences of ∆m greater
than 3.2 MeV/c2 the measured width scale is no longer within the 90% confidence
level region (shown in the left part of figure 4.12). The 95% confidence level region
is left for ∆m greater than 3.6 MeV/c2 (shown in the right part of figure 4.12).

For a fraction of f1 = 50%, the upper limit on ∆m thus is 3.2 (3.6) MeV/c2 at 90%
(95%) confidence level. The procedure is repeated for all fractions between 20% and
80% in 10% steps. Figure 4.14 shows the obtained limits on ∆m, both at 90% and
95% confidence level, as a function of ∆m. The obtained limit is quite stable for
values of f1 between 30% and 70%, resulting in upper limits of ≈ 3.4 (3.8) MeV/c2

at 90%(95%) confidence level. For more unbalanced signal yield ratios the limit
quickly becomes worse. For the most unbalanced tested relative yield fraction of
20% (80%), i.e. a yield ratio of 1 : 4 (4 : 1), an upper limit of 4.2 MeV/c2 at 90%
confidence level is obtained.

4.3 Measurement of the X(3872) Mass

In the previous section no evidence for the existence of more than one state was
found. The mass of a single X(3872) state is obtained by a fit to the X(3872) mass
spectrum.
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Figure 4.13: The evaluation of the upper limit on the mass difference for the case that
two hypothetical signal peaks have the yield ratio 50:50. Shown are as a function of ∆m
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parameter ψ(2S) value X(3872) value

lower mass border ml 3.6 GeV/c2 3.75 GeV/c2

upper mass border mh 3.75 GeV/c2 4.0 GeV/c2

background slope p1 free free
background curvature p2 free free
signal fraction fS free free
signal position m0 free free
intrinsic signal width Γ 0.337 MeV 1.34 MeV
narrow resolution width σn 2.43 MeV/c2 3.18 MeV/c2

narrow resolution fraction fn 0.717 0.675
broad/narrow width ratio k 2.04 1.81
resolution scale sr free free

Table 4.4: An overview of the used parameters in the fit function. For fixed parameters
the value is listed.

The large available number of X(3872) candidates allows for a precise measure-
ment of the X(3872) mass with small statistical uncertainty. It is expected that
the systematic uncertainty is of the order of or slightly larger than the statistical
uncertainty. The value of the systematic uncertainty is significantly improved by
the existence of the nearby ψ(2S) signal peak since any effect that may result in a
systematic uncertainty of the X(3872) mass should also be present for the ψ(2S) at
similar magnitude.

4.3.1 Fit to the Mass Spectrum

An unbinned maximum likelihood fit to the mass spectrum is performed for both the
ψ(2S) and theX(3872). The used fit function was already introduced in section 4.2.2
and is explicitly repeated here:

y(m) = fS [fn Voigt(m;m0, srσn,Γ) + (1 − fn) Voigt(m;m0, srkσn,Γ)]

+ (1 − fS)
1

mh −ml

[
1 + p1x(m) + p2(3x(m)2 − 1)

]
.

For the background function, the fit mass region [ml, mh] is transformed into the
interval [−1, 1] by

x(m) = −1 +
2

mh −ml
(m−ml).

The Voigt functions are explicitly normalized to the mass range [ml, mh]. Table 4.4
lists all fit parameters of the total fit function and, if fixed, the values they are fixed
to.

Performing the fit leads to measured mass values of

mψ(2S) = 3686.03 ± 0.02 MeV/c2,

mX(3872) = 3871.61 ± 0.16 MeV/c2.
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variation ψ(2S) mass X(3872) mass

smaller fit window 3686.03 ± 0.02 MeV/c2 3871.61 ± 0.16 MeV/c2

fix Γ to 0 3686.03 ± 0.02 MeV/c2 3871.60 ± 0.16 MeV/c2

fix Γ → 2Γ 3686.03 ± 0.02 MeV/c2 3871.61 ± 0.16 MeV/c2

linear background 3686.02 ± 0.02 MeV/c2 3871.62 ± 0.16 MeV/c2

simple Gaussian function 3686.02 ± 0.02 MeV/c2 3871.61 ± 0.16 MeV/c2

Table 4.5: Mass measurements for different changes to the fit model. No effects are
observed.

Projections of the fits can be seen in figure 4.15.

4.3.2 Evaluation of Systematic Uncertainties

The main contributions to the systematic uncertainty can be divided into two classes:
uncertainties from the fit model and uncertainties from the overall momentum scale.

A potential source of uncertainty is the fit model. If the fit model does not reflect
the true behavior of the spectrum, systematic shifts in the parameter estimates can
occur. The measurement of a signal position is however very robust to changes in the
fit model. If there is a prominent and symmetrical peak structure, the symmetrical
behavior of the signal shape does not show strong preferences for either side of the
signal position. As a consequence no significant systematic shifts should occur. The
following variations are investigated:

• Reduce the mass window by 40% from [3.6, 3.75] GeV/c2 to [3.63, 3.72] GeV/c2

for the ψ(2S) and from [3.75, 4.0] GeV/c2 to [3.80, 3.95] GeV/c2 for theX(3872).

• Fix the intrinsic width Γ to 0.

• Fix the intrinsic width Γ to twice the default value.

• Only use a linear background description.

• The fit model is drastically changed by using a simple single Gaussian function
to describe the signal distribution.

As expected, all variations lead to a negligible change in the fit result. For com-
pleteness, the fit results are listed in table 4.5.

The largest effect is found to originate from the momentum scale calibration. This
describes the uncertainty in the translation from the track curvature to the momen-
tum. Magnetic field and energy loss uncertainties can lead to a systematic over-
or underestimation of the measured momenta, which will systematically affect the
measured masses. It is very difficult to assign uncertainties only based on the knowl-
edge about the X(3872). It is thus of great benefit that with the ψ(2S) a state exists
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Figure 4.15: Projection of the performed unbinned fit to the mass spectrum for the ψ(2S)
(top) and the X(3872) (bottom). The fitted values are mψ(2S) = 3686.03 ± 0.02 MeV/c2

and mX(3872) = 3871.61 ± 0.16 MeV/c2.
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nearby which can be used to estimate the overall effect of the momentum scale on
the mass.

The measured and the world average value of the ψ(2S) mass are

mψ(2S) = 3686.03 ± 0.02 (stat) MeV/c2,

mPDG = 3686.09 ± 0.03 MeV/c2.

This is an extraordinary agreement with a difference of only 60 keV. Part of the
reason for the good agreement might be that at CDF the ψ(2S) was used together
with other particles to gauge the experimental momentum scale. However, the
gauge is usually performed on the dimuon decay mode of the ψ(2S). No matter the
reason, the agreement is very good but it can change slightly with different momenta
involved, so that the heavier X(3872) might have a slightly worse difference to its
true mass. Also studied is the ψ(2S) mass as a function of the momenta. This
can be seen in figures 4.16 and 4.17. The value of the ψ(2S) mass varied over
pT and η is quite stable. No major effects are observed. From the ψ(2S) mass
deviation to the world average and the good agreement in transverse momenta and
pseudorapidities, the systematic uncertainty in the ψ(2S) case is estimated to be
0.1 MeV/c2. Conservatively multiplying this number by a factor 2 to account for
possible differences due to the increase in available energy in the X(3872) case leads
to a systematic uncertainty of 0.2 MeV/c2 for the X(3872).

As a further check the decay length in the transverse plane Lxy is investigated.
Mismeasurements of Lxy causes systematically smaller or larger track curvatures,
depending on the facts whether the shift occurs towards larger or smaller values
of Lxy with respect to the true value and whether the fitted tracks are curving
away from (‘sailors’) or towards each other (‘cowboys’). Although the integrated
effect should cancel, both small asymmetries in Lxy-shifts and the presence of
X(3872)/ψ(2S) from b-meson decays could cause a net shift. This is checked by
cutting on |Lxy| < 0.01 cm and |Lxy| < 0.005 cm to test for a systematic effect. The
results are:

cut ψ(2S) mass X(3872) mass

no cut 3686.03 ± 0.02 MeV/c2 3871.61 ± 0.16 MeV/c2

|Lxy| < 0.01 cm 3686.01 ± 0.02 MeV/c2 3871.65 ± 0.17 MeV/c2

|Lxy| < 0.005 cm 3686.00 ± 0.03 MeV/c2 3871.59 ± 0.19 MeV/c2

A miniscule shift towards lower values is observed for the ψ(2S), while for the
X(3872) no conclusive effect can be observed. If an effect exists, it is negligible to
the assigned uncertainty of 0.2 MeV/c2 from the momentum scale.

Possible effects from the selection process are cross-checked by investigating the
stability of the measured ψ(2S) mass as a function of the variables, used in the
selection. Considered are the neural network output and the number of candidates.
Figure 4.18 illustrates the stability of the ψ(2S) mass in both cases. No systematic
uncertainty is assigned.



124 Chapter 4. Measurement of the X(3872) Mass

 )  ( GeV / cT(2S) pψ
6 8 10 12 14 16 18 20 22

 )2
 m

  (
 M

eV
 / 

c
∆

-1

-0.8
-0.6

-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

 )  ( GeV / cT pψJ/
4 6 8 10 12 14 16 18

 )2
 m

  (
 M

eV
 / 

c
∆

-1

-0.8
-0.6

-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

 )  ( GeV / cT) pππR(
1 1.5 2 2.5 3 3.5 4

 )2
 m

  (
 M

eV
 / 

c
∆

-1

-0.8
-0.6

-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

 )  ( GeV / cT p+µ
2 3 4 5 6 7 8 9 10 11

 )2
 m

  (
 M

eV
 / 

c
∆

-1

-0.8
-0.6

-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

 )  ( GeV / cT p+π
0.5 1 1.5 2 2.5

 )2
 m

  (
 M

eV
 / 

c
∆

-1

-0.8
-0.6

-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

Figure 4.16: Dependence of the measured ψ(2S) mass as a function of the transverse
momenta of the involved particles. Also shown (histogram) are the expected position
changes from simulation, which show a slightly stronger dependence than the measured
data. The lines are added to ‘guide the eye’.
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Figure 4.17: Dependence of the measured ψ(2S) mass as a function of the pseudorapidities
of the involved particles. Also shown (histogram) are the expected position changes from
simulation. The lines are added to ‘guide the eye’.
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Figure 4.18: Dependence of the measured ψ(2S) mass on the selection variables. The
left plot shows the dependence on the neural network output, which is the main selection
variable. A low-statistics fluctuation at −0.9 (∆m = −1.99 ± 0.96) is outside the shown
range. The right plot shows the dependence on the number of candidates after preselection
per detector event. In both cases no dependence is observed.

In total, a systematic uncertainty of 0.2 MeV/c2 is assigned to the X(3872) mass.
The final mass measurement of the X(3872) is

mX(3872) = 3871.61± 0.16 (stat) ± 0.20 (syst) MeV/c2.



Chapter 5

Discussion and Outlook

5.1 Summary

The discovery of the X(3872) in 2003 caused a resurgence of interest for charm
spectroscopy. To the present day the nature of the X(3872) is unknown. From the
variety of possible conventional charmonium states, none is able to give a fitting
description of the observed properties of the X(3872). The exceptional agreement
between the X(3872) mass and the sum of the D0 and D0∗ meson masses quickly
prompted the attempt to explain the X(3872) by a molecule-like bound meson state.
Also multiquark states, quark-gluon hybrids or glueballs were proposed as possible
explanations.

The CDF experiment is well suited to measure the X(3872) in its decay to J/ψπ+π−.
A dedicated trigger system for clean J/ψ selection and a large tracking volume for
precise momentum measurement allow a high-yield and precise reconstruction of
X(3872) candidates. The main challenge is the suppression of the vast background
due to random track combinations. The measurement ofX(3872) properties strongly
benefits from the existence of the well-known charmonium state ψ(2S) in the same
decay channel at a similar momentum regime. This allows for an independent veri-
fication of the involved methods.

Of primary interest for the interpretation of the X(3872) are its quantum num-
bers JPC , i.e. the spin J and the parity and charge-parity eigenvalues P and
C. A data sample corresponding to an integrated luminosity of ≈ 780 pb−1 is
used to measure the angular distributions and correlations in the decay X(3872)→
J/ψπ+π−. The measured distribution is compared to expected distributions for dif-
ferent JPC hypotheses and evaluated with a χ2 approach. The determination of the
expected distributions involves the construction of decay matrix elements for the de-
cay X(3872)→ J/ψπ+π− and a simulation of the CDF detector and trigger system.
Table 5.1 lists all tested JPC hypotheses and their agreement with the measurement.
From 15 tested JPC hypotheses only the assignments JPC = 1++ and JPC = 2−+

are able to describe the measured data. All other hypotheses are excluded by at
least 3σ. The results of this analysis have been published in reference [60].
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hypothesis χ2 (11 d.o.f.) χ2 probability

1++ 13.23 0.28
2−+ 13.56 0.26
1−− 35.13 2.4×10−4

2+− 38.91 5.49×10−5

2−− 39.82 3.84×10−5

1+− 39.82 3.84×10−5

3+− 39.82 3.84×10−5

3−− 41.00 2.41×10−5

2++ 43.02 1.08×10−5

1−+ 45.40 4.13×10−6

0−+ 103.59 3.46×10−17

0+− 129.21 ≤1×10−20

0++ 163.07 ≤1×10−20

Table 5.1: Result of the angular analysis. Listed are the JPC hypothesis, the obtained χ2

and the corresponding χ2 probability for 11 degrees of freedom.

The analysis of the X(3872) mass is important to evaluate the validity of non-
conventional X(3872) models. For this purpose, a data sample corresponding to
an integrated luminosity of ≈ 2.4 fb−1 is analyzed. The possibility of two separate,
nearby X(3872) states which appear as one state because of resolution effects is
studied by comparing the observed X(3872) width to predictions for various two-
state scenarios and the one-state scenario. The one-state scenario is found to be
very well compatible with the observed mass spectrum, not indicating any evidence
for two separate states. Under the assumption of two states contributing to the
observed signal, 90% and 95% confidence level upper limits on the mass difference
between the two signals are set as a function of the fractional contribution of the
lower mass signal peak (see figure 5.1). For the most sensitive case when both
states contribute equally, the upper limit on ∆m is 3.2 (3.6) MeV/c2 at 90% (95%)
confidence level. Assuming a single state, the precise measurement of the X(3872)
mass results in

mX(3872) = 3871.61± 0.16 (stat) ± 0.20 (syst) MeV/c2.

5.2 Discussion

5.2.1 Comparison to Previous Results

These measurements significantly and consistently add to the known facts about
the X(3872). Both the remaining possibilities for the quantum numbers, JPC =
1++ and JPC = 2−+, have positive C-parity, supporting the pieces of evidence for
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Figure 5.1: The results of the analysis of the measured J/ψπ+π− mass spectrum. The left
plot shows the distribution of the measured J/ψπ+π− mass spectrum and a projection
of the fit used to determine the mass. The right plot shows the obtained 90% C.L. (red
points) and 95% C.L. (blue points) upper limits on the mass difference ∆m.

the decay X(3872) → J/ψγ [57, 56] and the evidence for the decay X(3872) →
J/ψω [56]. It also supports the interpretation of the intermediate dipion system as
a ρ0-resonance [59].

The observed peak structure agrees well with the expectations for only one state.
This confirms the results from Belle and BABAR [7, 61] with high statistical power.
They measure the X(3872) mass both in B+ and B0 decays. While the statistically
very weak result from BABAR indicates a 2σ mass deviation in the B0 decay (also
see figure 5.2), the Belle result shows essentially no deviation, but also with low
statistical power.

The measured mass of mX(3872) = 3871.61± 0.16 (stat) ± 0.20 (syst) MeV/c2 is well
consistent with the current world average value mPDG = 3871.4 ± 0.6 MeV/c2 [6].
This new measurement has by far the lowest measurement uncertainty of all single
X(3872) mass measurements and will dominate the world average X(3872) mass
for a long time. In the foreseeable future only LHCb or Super-Belle might be able
to measure the X(3872) with equally high statistical power. Figure 5.2 shows the
impact of the measured X(3872) mass. Shown are the most recent mass measure-
ments from the single experiments, combined to a world average. Compared to the
world average from the Particle Data Group the mass measurement of the X(3875)
is omitted, since it is not clear whether this state is connected to the X(3872) or
not. This results in a world average mass of 3871.20±0.39MeV/c2 without the new
measurement of this thesis. Replacing the old CDF measurement with the new one
results in an average of m = 3871.50±0.22MeV/c2, shifting the value by 0.3MeV/c2

to higher masses and reducing the uncertainty of the world average mass by almost
a factor of 2.
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each measurement.

5.2.2 Impact on X(3872) Models

The impact of the quantum number analysis result on the charmonium hypothesis
is severe. Only two possible states in the X(3872) mass vicinity remain: the 23P1

state χ′
c1 with JPC = 1++ and the 11D2 state ηc2 with JPC = 2−+. For both χ′

c1

and ηc2 the observed decay to J/ψρ should be suppressed by isospin conservation.
Furthermore charmonium models predict 55−200MeV/c2 higher masses for the χ′

c1

and 35−110MeV/c2 lower masses for the ηc2 [19, 20]. It remains to be seen if model
changes can satisfactorily and coherently explain these discrepancies. At any rate
the charmonium hypothesis is even weaker than before, while its firm exclusion is
still not possible.

The hypothesis JPC = 1++ agrees with the ground state prediction of ‘molecu-
lar’ D0D̄0∗ bound state models. The performed precise mass measurement of the
X(3872) adds crucial information to this hypothesis. By comparing the central
value of the average to the world average value of the sum of the ‘molecular con-
stituents’, mD0D0∗ = 3871.81 MeV/c2, it can be seen that the X(3872) is lighter by
0.3 ± 0.4 MeV/c2. This still allows for a simple bound state. Unfortunately, the
involved uncertainty does not allow to firmly determine the heavier system. With
the new X(3872) mass measurement, this uncertainty is now dominated by the
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uncertainties on the D masses.

The quantum numbers JPC = 1++ agree with the prediction of various multiquark
models. The model of Maiani et al. is however disfavored, since there is no evidence
for two separate states. The proposed mass difference of (8 ± 3) MeV/c2 is beyond
the obtained upper limits for the mass difference. This either means that there
simply is no prominent second neutral state decaying into J/ψπ+π− or that the two
possible states are so close in mass that they cannot be resolved by experiment.
While multiquark hypotheses remain an interesting field, no model with verifiable
predictions has so far turned out to be correct.

All hypotheses predicting other quantum numbers than JPC = 1++ or JPC = 2−+

are excluded. This includes the glueball hypothesis, predicting JPC = 1−−.

The bottom line is that the nature of the X(3872) remains to be unclear. While
the results from this thesis considerably add to the available information about
the X(3872), they unfortunately do not suffice to draw firm conclusions, neither
about the question ‘Is the conventional charmonium hypothesis for the X(3872)
excluded?’ nor about the less interesting question ‘Are the main alternatives ex-
cluded?’ It should however be noted that all results are in agreement with the
molecular interpretation of the X(3872).

5.3 Outlook

The observation of the X(3872) and the challenges to explain its properties in a
consistent way lead to newfound interest in particle spectroscopy. Experimental
interest in the X(3872) has in the meantime decreased to some degree, since no new
properties are left to study that are easily measurable. However, a reinvestigation
of some properties might be of interest, like the study of the possible decay channels
X(3872)→ J/ψπ0π0 or X(3872)→ J/ψω, or a measurement of the dipion system.

The possibility of the X(3872) being an unconventional state has in the meantime
been strengthened by the observation of further charmonium-like particles. To the
present day, nine further new particles have been observed. They are listed in ta-
ble 5.2. These states can not all be explained by one model. They cannot all be
charmonium states since the number of states overpopulate the expected charmo-
nium spectrum. As for the X(3872), various explanations are available for most of
the states and the picture is completely unclear how the entirety of all states can
fit into a given picture. A nice overview for the new XYZ states can be found in
references [18, 105]. One state is particularly interesting. The Z(4430), observed
by Belle [106] in the decay mode to ψ(2S)π+, is a charged particle. This cannot be
achieved by a regular, neutral cc̄ charmonium state. If confirmed as a real particle,
this would unambiguously proof the existence of an exotic state. All of the observed
states are observed with a significance of more than 5σ. Still, the statistical basis
for the single observations is quite low, so that independent confirmations and more
data are welcome to clarify the picture. All the combined information, even allowing
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state mass (MeV/c2) Γ (MeV) decay mode experiment

Z(3930) 3929 ± 5 29 ± 10 DD̄ Belle
X(3940) 3942 ± 9 37 ± 17 DD̄∗ Belle
Y (3940) 3943 ± 17 87 ± 34 J/ψω BABAR, Belle
Y (4008) 4008+82

−49 226+97
−80 J/ψπ+π− Belle

X(4160) 4156 ± 29 139+113
−65 D∗D̄∗ Belle

Y (4260) 4264 ± 12 83 ± 22 J/ψπ+π− BABAR, Belle, CLEO
Y (4350) 4361 ± 13 74 ± 18 ψ(2S)π+π− BABAR, Belle
Z(4430) 4433 ± 5 45+35

−18 ψ(2S)π+ Belle
Y (4660) 4664 ± 12 48 ± 15 ψ(2S)π+π− Belle

Table 5.2: Overview of the observed XYZ states (from reference [18]). Listed are the state,
its mass and width, the decay mode and the observing experiments.

for wrongly claimed signals, quite clearly suggest that the regular quark model is
not able to satisfactorily describe the experimental observations.

So far, all observations were made in the c-quark sector. Most exotic interpreta-
tions should equally well hold in the b-quark sector. So a complete range of states
potentially awaits observation in the b-quark sector, where so far only the radial ex-
citations of the quark model bb̄ Υ states are known. However, low statistics will be
an enormous challenge, both at the Tevatron and even more at the B-factories. This
challenge could be met at the Tevatron or the B-factories if the production cross
section of these yet unknown states is sufficiently high. In fact, recent observations
by Belle indicate the existence of a state at the Υ(5S) mass, which does not agree
with the known Υ(5S) properties [107]. If searches remain however unsuccessful, the
LHCb experiment with its large event rate should be able to make firm statements
about the existence of such states in the foreseeable future.

Spectroscopy analyses are at the moment reaping the benefits of continuous and
successful data collection. While the X(3872) might turn out to be a conventional
charmonium state, it is still clear from the X(3872) and the zoo of unaccounted
states that we do not yet understand the physics of bound states at low energies.
This sector will thus be a continuous field of interest in the future, awaiting break-
throughs both experimentally and theoretically. It is not only of interest to look for
new physics at the highest available energies — we learned from the X(3872) that
unexpected phenomena are still to be found in seemingly well-understood energy
ranges.

5.4 Conclusion

This thesis studied properties of the charmonium-like X(3872) state, which is an
exotic matter candidate. The measurements are performed using a data sample col-
lected with the CDF experiment. This sample features the world’s largest amount
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of X(3872) particles. Constraints on spin, parity, and charge conjugation parity
of the X(3872) are obtained by studying the angular distributions and correlations
in the exclusive decay mode X(3872) → J/ψπ+π−. The assignments JPC = 1++

and JPC = 2−+ are the only hypotheses consistent with the measured data. All
other tested hypotheses are excluded by more than 3σ confidence level. To test the
hypothesis of two separate states with similar mass, the signal mass distribution of
the X(3872) is investigated. It is concluded that the measured spectrum is very
well compatible with only one state. Assuming equal production and decay rates
between two possible states, an upper limit on their mass difference ∆m is set to be
3.2 (3.6) MeV/c2 at 90% (95%) confidence level. A precise X(3872) mass measure-
ment is performed, resulting inmX(3872) = 3871.61±0.16 (stat)±0.20 (syst) MeV/c2.
This is the most precise single measurement to date, reducing the world average mass
uncertainty by nearly 50%. All measurements are crucial inputs for the developing
understanding of the X(3872).
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Appendix A

Reference Distributions for the
JPC Analysis

A.1 Angular Distributions of All Tested JPC Hy-

potheses

On the following pages the angular distributions used for the discrimination between
different JPC hypotheses are shown. The histograms show the distributions with
and without the effects of detector acceptance (dotted line). Also shown is the
distribution using the three-dimensional binning, employed to determine the χ2

value in the analysis.
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Figure A.1: Angular distributions for the hypothesis JPC = 0++.
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Figure A.2: Angular distributions for the hypothesis JPC = 0+−.
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Figure A.3: Angular distributions for the hypothesis JPC = 0−+.
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Figure A.4: Angular distributions for the hypothesis JPC = 1++.
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Figure A.5: Angular distributions for the hypothesis JPC = 1+−.
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Figure A.6: Angular distributions for the hypothesis JPC = 1−+.
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Figure A.7: Angular distributions for the hypothesis JPC = 1−−.
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Figure A.8: Angular distributions for the hypothesis JPC = 2++.
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Figure A.9: Angular distributions for the hypothesis JPC = 2+−.
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Figure A.10: Angular distributions for the hypothesis JPC = 2−+.
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Figure A.11: Angular distributions for the hypothesis JPC = 2−−.



A.1. Angular Distributions of All Tested JPC Hypotheses 141

)|ψJ/θ|cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ar
b

. u
n

it
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Cuts&Acc.+-3

 original+-3

)|ππθ|cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ar
b

. u
n

it
s

0

0.2

0.4

0.6

0.8

1

1.2

 Cuts&Acc.+-3

 original+-3

/2|π|-π-Φ∆||
0 0.2 0.4 0.6 0.8 1 1.2 1.4

ar
b

. u
n

it
s

0

0.2

0.4

0.6

0.8

1

1.2
 Cuts&Acc.+-3

 original+-3

/2|π| - π - Φ∆||

ar
b

. u
n

it
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.63 1.15 /2π

0 0.63 1.15 /2π

0 0.63 1.15 /2π

0 0.63 1.15 /2π

)| < 0.6 ΨJ/Θ|cos( )| > 0.6 ΨJ/Θ|cos(

)| < 0.5 π πΘ|cos( )| > 0.5 π πΘ|cos( )| < 0.5 π πΘ|cos( )| > 0.5 π πΘ|cos(

 Cuts&Acc.+-3

 original+-3

Figure A.12: Angular distributions for the hypothesis JPC = 3+−.
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Figure A.13: Angular distributions for the hypothesis JPC = 3−−.
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A.2 Fits to the J/ψππ Mass Spectrum

In this section all fits to the measured data J/ψπ+π− mass spectrum are shown,
which are performed to obtain the distribution of the three-dimensional angular dis-
tribution. The fit function is parameterized by a second-order polynomial for the
combinatorial background, and a Gaussian function with positionm = 3871.7 MeV/c2

and width σ = 5.0 MeV/c2.

In the following figures, the upper left plot shows the fit result in the fitted mass
window. The upper right plot shows the same spectrum and the same fit in a
narrower mass window for a closer look at the signal peak. The lower left plot
shows the residuals between fit value and histogram value, i.e. the difference between
measured value and fitted value, divided by the square root of the measured data
value. In the lower right plot the values from the lower left plot are filled into a
histogram and fitted with a Gaussian function. The fit must be compatible with a
width of σ = 1 and and a mean value of 0, if the fit-model is correct.
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Figure A.14: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| <
0.5, 0 < ||∆Φ − π| − π

2 | < 0.63.
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Figure A.15: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| <
0.5, 0.63 < ||∆Φ − π| − π

2 | < 1.15.
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Figure A.16: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| <
0.5, 1.15 < ||∆Φ − π| − π
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Figure A.17: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| >
0.5, 0 < ||∆Φ − π| − π

2 | < 0.63.
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Figure A.18: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| >
0.5, 0.63 < ||∆Φ − π| − π

2 | < 1.15.
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Figure A.19: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| < 0.6, | cos(θππ)| >
0.5, 1.15 < ||∆Φ − π| − π

2 | < π/2.
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Figure A.20: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| <
0.5, 0 < ||∆Φ − π| − π

2 | < 0.63.
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Figure A.21: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| <
0.5, 0.63 < ||∆Φ − π| − π

2 | < 1.15.
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Figure A.22: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| <
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Figure A.23: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| >
0.5, 0 < ||∆Φ − π| − π
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Figure A.24: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| >
0.5, 0.63 < ||∆Φ − π| − π

2 | < 1.15.
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Figure A.25: Fit to the mass spectrum in the angular bin: | cos(θJ/ψ)| > 0.6, | cos(θππ)| >
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A.3 Angular Comparison for All Tested JPC Hy-

potheses

This section shows the comparison plots between measured angular distributions and
expectations for different JPC hypotheses. Shown are the graphical representation
and a table of the residuals for each angular interval. The numbering of the intervals
in the table uses interval 1 as the leftmost bin in the histogram and interval 12 as the
rightmost bin. The numbers in the table have a slight mismatch between residual
and squared value because of rounding inaccuracies.
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Figure A.26: Comparison of measurement and prediction for JPC = 0++.
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Figure A.27: Comparison of measurement and prediction for JPC = 0−+.
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Figure A.28: Comparison of measurement and prediction for JPC = 0+−.
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Figure A.29: Comparison of measurement and prediction for JPC = 1++.
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Figure A.30: Comparison of measurement and prediction for JPC = 1−+.
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Figure A.31: Comparison of measurement and prediction for JPC = 1+−.
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Figure A.32: Comparison of measurement and prediction for JPC = 1−−.
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Figure A.33: Comparison of measurement and prediction for JPC = 2++.
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Figure A.34: Comparison of measurement and prediction for JPC = 2−+.
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Figure A.35: Comparison of measurement and prediction for JPC = 2+−.
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Figure A.36: Comparison of measurement and prediction for JPC = 2−−.
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Figure A.37: Comparison of measurement and prediction for JPC = 3+−.

/2|π| - π - Φ ∆||

X
(3

87
2)

 y
ie

ld
 / 

u
n

it
 v

o
lu

m
e

0

100

200

300

400

500

0 0.63 1.15 /2π
0 0.63 1.15 /2π

0 0.63 1.15 /2π
0 0.63 1.15 /2π

)| < 0.6 ΨJ/Θ|cos( )| > 0.6 ΨJ/Θ|cos(

)| < 0.5 π πΘ|cos( )| > 0.5 π πΘ|cos( )| < 0.5 π πΘ|cos( )| > 0.5 π πΘ|cos(

CDF Run II  -1 780pb≈L
Bin Resid. χ2

i

1 -3.2 10.6
2 1.4 2.1
3 1.1 1.2
4 -3.2 10.2
5 0.1 0.0
6 -0.2 0.0
7 -1.4 2.1
8 1.0 1.0
9 0.6 0.4
10 2.1 4.3
11 2.9 8.1
12 1.0 0.9

total 41.0

Figure A.38: Comparison of measurement and prediction for JPC = 3−−.
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